1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
|
/**
* @file llvosky.h
* @brief LLVOSky class header file
*
* Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#ifndef LL_LLVOSKY_H
#define LL_LLVOSKY_H
#include "stdtypes.h"
#include "v3color.h"
#include "v4coloru.h"
#include "llviewerimage.h"
#include "llviewerobject.h"
#include "llframetimer.h"
//////////////////////////////////
//
// Lots of constants
//
// Will clean these up at some point...
//
const F32 HORIZON_DIST = 1024.0f;
const F32 HEAVENLY_BODY_DIST = HORIZON_DIST - 10.f;
const F32 HEAVENLY_BODY_FACTOR = 0.1f;
const F32 HEAVENLY_BODY_SCALE = HEAVENLY_BODY_DIST * HEAVENLY_BODY_FACTOR;
const F32 EARTH_RADIUS = 6.4e6f; // exact radius = 6.37 x 10^6 m
const F32 ATM_EXP_FALLOFF = 0.000126f;
const F32 ATM_SEA_LEVEL_NDENS = 2.55e25f;
// Somewhat arbitrary:
const F32 ATM_HEIGHT = 100000.f;
const F32 FIRST_STEP = 5000.f;
const F32 INV_FIRST_STEP = 1.f/FIRST_STEP;
const S32 NO_STEPS = 15;
const F32 INV_NO_STEPS = 1.f/NO_STEPS;
// constants used in calculation of scattering coeff of clear air
const F32 sigma = 0.035f;
const F32 fsigma = (6+3*sigma)/(6.f-7.f*sigma);
const F64 Ndens = 2.55e25;
const F64 Ndens2 = Ndens*Ndens;
// !!! *FIX: This #define should be in llcommon somewhere...
// We should not be #defining anything with leading underscores and
// much less double leading underscores since that is always vendor
// specific. Change this to something like LL_FORCE_INLINE.
#ifdef __GNUC__
#define __forceinline inline __attribute__((always_inline))
#endif
__forceinline LLColor3 color_div(const LLColor3 &col1, const LLColor3 &col2)
{
return LLColor3(
col1.mV[0] / col2.mV[0],
col1.mV[1] / col2.mV[1],
col1.mV[2] / col2.mV[2] );
}
LLColor3 color_norm(const LLColor3 &col);
LLVector3 move_vec (const LLVector3& v, F32 cos_max_angle);
BOOL clip_quad_to_horizon(F32& t_left, F32& t_right, LLVector3 v_clipped[4],
const LLVector3 v_corner[4], const F32 cos_max_angle);
F32 clip_side_to_horizon(const LLVector3& v0, const LLVector3& v1, const F32 cos_max_angle);
inline F32 color_intens ( const LLColor3 &col )
{
return col.mV[0] + col.mV[1] + col.mV[2];
}
inline F32 color_max(const LLColor3 &col)
{
return llmax(col.mV[0], col.mV[1], col.mV[2]);
}
inline F32 color_max(const LLColor4 &col)
{
return llmax(col.mV[0], col.mV[1], col.mV[2]);
}
inline F32 color_min(const LLColor3 &col)
{
return llmin(col.mV[0], col.mV[1], col.mV[2]);
}
inline LLColor3 color_norm_abs(const LLColor3 &col)
{
const F32 m = color_max(col);
if (m > 1e-6)
{
return 1.f/m * col;
}
else return col;
}
class LLFace;
class LLHaze;
class LLSkyTex
{
friend class LLVOSky;
private:
static S32 sResolution;
static S32 sComponents;
LLPointer<LLImageGL> mImageGL[2];
LLPointer<LLImageRaw> mImageRaw[2];
LLColor3 *mSkyData;
LLVector3 *mSkyDirs; // Cache of sky direction vectors
static S32 sCurrent;
static F32 sInterpVal;
public:
static F32 getInterpVal() { return sInterpVal; }
static void setInterpVal(const F32 v) { sInterpVal = v; }
static BOOL doInterpolate() { return sInterpVal > 0.001; }
void bindTexture(BOOL curr = TRUE);
protected:
LLSkyTex();
void init();
void cleanupGL();
void restoreGL();
~LLSkyTex();
static S32 getResolution() { return sResolution; }
static S32 getCurrent() { return sCurrent; }
static S32 stepCurrent() { return (sCurrent = ++sCurrent % 2); }
static S32 getNext() { return ((sCurrent+1) % 2); }
static S32 getWhich(const BOOL curr) { return curr ? sCurrent : getNext(); }
void initEmpty(const S32 tex);
void create(F32 brightness_scale, const LLColor3& multiscatt);
void setDir(const LLVector3 &dir, const S32 i, const S32 j)
{
S32 offset = i * sResolution + j;
mSkyDirs[offset] = dir;
}
const LLVector3 &getDir(const S32 i, const S32 j) const
{
S32 offset = i * sResolution + j;
return mSkyDirs[offset];
}
void setPixel(const LLColor3 &col, const S32 i, const S32 j)
{
S32 offset = i * sResolution + j;
mSkyData[offset] = col;
}
void setPixel(const LLColor4U &col, const S32 i, const S32 j)
{
S32 offset = (i * sResolution + j) * sComponents;
U32* pix = (U32*) &(mImageRaw[sCurrent]->getData()[offset]);
*pix = col.mAll;
}
LLColor4U getPixel(const S32 i, const S32 j)
{
LLColor4U col;
S32 offset = (i * sResolution + j) * sComponents;
U32* pix = (U32*) &(mImageRaw[sCurrent]->getData()[offset]);
col.mAll = *pix;
return col;
}
LLImageRaw* getImageRaw(BOOL curr=TRUE) { return mImageRaw[getWhich(curr)]; }
void createGLImage(BOOL curr=TRUE);
};
class LLHeavenBody
{
protected:
LLVector3 mDirectionCached; // hack for events that shouldn't happen every frame
LLColor3 mColor;
LLColor3 mColorCached;
F32 mIntensity;
LLVector3 mDirection; // direction of the local heavenly body
LLVector3 mAngularVelocity; // velocity of the local heavenly body
F32 mDiskRadius;
BOOL mDraw; // FALSE - do not draw.
F32 mHorizonVisibility; // number [0, 1] due to how horizon
F32 mVisibility; // same but due to other objects being in frong.
BOOL mVisible;
static F32 sInterpVal;
LLVector3 mQuadCorner[4];
LLVector3 mU;
LLVector3 mV;
LLVector3 mO;
public:
LLHeavenBody(const F32 rad) :
mDirectionCached(LLVector3(0,0,0)), mDirection(LLVector3(0,0,0)),
mDiskRadius(rad), mDraw(FALSE),
mHorizonVisibility(1), mVisibility(1)
{
mColor.setToBlack();
mColorCached.setToBlack();
}
~LLHeavenBody() {}
const LLVector3& getDirection() const { return mDirection; }
void setDirection(const LLVector3 &direction) { mDirection = direction; }
void setAngularVelocity(const LLVector3 &ang_vel) { mAngularVelocity = ang_vel; }
const LLVector3& getAngularVelocity() const { return mAngularVelocity; }
const LLVector3& getDirectionCached() const { return mDirectionCached; }
void renewDirection() { mDirectionCached = mDirection; }
const LLColor3& getColorCached() const { return mColorCached; }
void setColorCached(const LLColor3& c) { mColorCached = c; }
const LLColor3& getColor() const { return mColor; }
void setColor(const LLColor3& c) { mColor = c; }
void renewColor() { mColorCached = mColor; }
static F32 interpVal() { return sInterpVal; }
static void setInterpVal(const F32 v) { sInterpVal = v; }
LLColor3 getInterpColor() const
{
return sInterpVal * mColor + (1 - sInterpVal) * mColorCached;
}
// LLColor3 getDiffuseColor() const
// {
// LLColor3 dif = mColorCached;
// dif.clamp();
// return 2 * dif;
// }
// LLColor4 getAmbientColor(const LLColor3& scatt, F32 scale) const
// {
// const F32 min_val = 0.05f;
// LLColor4 col = LLColor4(scale * (0.8f * color_norm_abs(getDiffuseColor()) + 0.2f * scatt));
// //F32 left = max(0, 1 - col.mV[0]);
// if (col.mV[0] >= 0.9)
// {
// col.mV[1] = llmax(col.mV[1], 2.f * min_val);
// col.mV[2] = llmax(col.mV[2], min_val);
// }
// col.setAlpha(1.f);
// return col;
// }
const F32& getHorizonVisibility() const { return mHorizonVisibility; }
void setHorizonVisibility(const F32 c = 1) { mHorizonVisibility = c; }
const F32& getVisibility() const { return mVisibility; }
void setVisibility(const F32 c = 1) { mVisibility = c; }
const F32 getHaloBrighness() const
{
return llmax(0.f, llmin(0.9f, mHorizonVisibility)) * mVisibility;
}
BOOL isVisible() const { return mVisible; }
void setVisible(const BOOL v) { mVisible = v; }
const F32& getIntensity() const { return mIntensity; }
void setIntensity(const F32 c) { mIntensity = c; }
void setDiskRadius(const F32 radius) { mDiskRadius = radius; }
F32 getDiskRadius() const { return mDiskRadius; }
void setDraw(const BOOL draw) { mDraw = draw; }
BOOL getDraw() const { return mDraw; }
const LLVector3& corner(const S32 n) const { return mQuadCorner[n]; }
LLVector3& corner(const S32 n) { return mQuadCorner[n]; }
const LLVector3* corners() const { return mQuadCorner; }
const LLVector3& getU() const { return mU; }
const LLVector3& getV() const { return mV; }
void setU(const LLVector3& u) { mU = u; }
void setV(const LLVector3& v) { mV = v; }
};
__forceinline LLColor3 refr_ind_calc(const LLColor3 &wave_length)
{
LLColor3 refr_ind;
for (S32 i = 0; i < 3; ++i)
{
const F32 wl2 = wave_length.mV[i] * wave_length.mV[i] * 1e-6f;
refr_ind.mV[i] = 6.43e3f + ( 2.95e6f / ( 146.0f - 1.f/wl2 ) ) + ( 2.55e4f / ( 41.0f - 1.f/wl2 ) );
refr_ind.mV[i] *= 1.0e-8f;
refr_ind.mV[i] += 1.f;
}
return refr_ind;
}
__forceinline LLColor3 calc_air_sca_sea_level()
{
const static LLColor3 WAVE_LEN(675, 520, 445);
const static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN);
const static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1);
const static LLColor3 n4 = n21 * n21;
const static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f;
const static LLColor3 wl4 = wl2 * wl2;
const static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4;
const static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2);
return dens_div_N * color_div ( mult_const, wl4 );
}
const LLColor3 gAirScaSeaLevel = calc_air_sca_sea_level();
const F32 AIR_SCA_INTENS = color_intens(gAirScaSeaLevel);
const F32 AIR_SCA_AVG = AIR_SCA_INTENS / 3;
class LLHaze
{
public:
LLHaze() : mG(0), mFalloff(1) {mSigSca.setToBlack();}
LLHaze(const F32 g, const LLColor3& sca, const F32 fo = 2) :
mG(g), mSigSca(0.25f/F_PI * sca), mFalloff(fo), mAbsCoef(0)
{
mAbsCoef = color_intens(mSigSca) / AIR_SCA_INTENS;
}
LLHaze(const F32 g, const F32 sca, const F32 fo = 2) : mG(g),
mSigSca(0.25f/F_PI * LLColor3(sca, sca, sca)), mFalloff(fo)
{
mAbsCoef = 0.01f * sca / AIR_SCA_AVG;
}
static void initClass();
F32 getG() const { return mG; }
void setG(const F32 g)
{
mG = g;
}
const LLColor3& getSigSca() const // sea level
{
return mSigSca;
}
void setSigSca(const LLColor3& s)
{
mSigSca = s;
mAbsCoef = 0.01f * color_intens(mSigSca) / AIR_SCA_INTENS;
}
void setSigSca(const F32 s0, const F32 s1, const F32 s2)
{
mSigSca = AIR_SCA_AVG * LLColor3 (s0, s1, s2);
mAbsCoef = 0.01f * (s0 + s1 + s2) / 3;
}
F32 getFalloff() const
{
return mFalloff;
}
void setFalloff(const F32 fo)
{
mFalloff = fo;
}
F32 getAbsCoef() const
{
return mAbsCoef;
}
inline static F32 calcFalloff(const F32 h)
{
return (h <= 0) ? 1.0f : (F32)LL_FAST_EXP(-ATM_EXP_FALLOFF * h);
}
inline LLColor3 calcSigSca(const F32 h) const
{
return calcFalloff(h * mFalloff) * mSigSca;
}
inline void calcSigSca(const F32 h, LLColor3 &result) const
{
result = mSigSca;
result *= calcFalloff(h * mFalloff);
}
LLColor3 calcSigExt(const F32 h) const
{
return calcFalloff(h * mFalloff) * (1 + mAbsCoef) * mSigSca;
}
F32 calcPhase(const F32 cos_theta) const;
static inline LLColor3 calcAirSca(const F32 h);
static inline void calcAirSca(const F32 h, LLColor3 &result);
static LLColor3 calcAirScaSeaLevel() { return gAirScaSeaLevel; }
static const LLColor3 &getAirScaSeaLevel() { return sAirScaSeaLevel; }
public:
static LLColor3 sAirScaSeaLevel;
protected:
F32 mG;
LLColor3 mSigSca;
F32 mFalloff; // 1 - slow, >1 - faster
F32 mAbsCoef;
};
class LLTranspMap
{
public:
LLTranspMap() : mElevation(0), mMaxAngle(0), mStep(5), mHaze(NULL), mT(NULL) {}
~LLTranspMap()
{
delete[] mT;
mT = NULL;
}
void init(const F32 elev, const F32 step, const F32 h, const LLHaze* const haze);
F32 calcHeight(const LLVector3& pos) const
{
return pos.magVec() - EARTH_RADIUS ;
}
BOOL hasHaze() const
{
return mHaze != NULL;
}
LLColor3 calcSigExt(const F32 h) const
{
return LLHaze::calcAirSca(h) + (hasHaze() ? mHaze->calcSigExt(h) : LLColor3(0, 0, 0));
}
inline void calcAirTransp(const F32 cos_angle, LLColor3 &result) const;
LLColor3 calcAirTranspDir(const F32 elevation, const LLVector3 &dir) const;
LLColor3 getHorizonAirTransp () const { return mT[mMapSize-1]; }
F32 hitsAtmEdge(const LLVector3& orig, const LLVector3& dir) const;
protected:
F32 mAtmHeight;
F32 mElevation;
F32 mMaxAngle;
F32 mCosMaxAngle;
F32 mStep;
F32 mStepInv;
S32 mMapSize;
const LLHaze *mHaze;
LLColor3 *mT; // transparency values in all directions
//starting with mAngleBelowHorz at mElevation
};
class LLTranspMapSet
{
protected:
F32 *mHeights;
LLTranspMap *mTransp;
S32 mSize;
F32 mMediaHeight;
const LLHaze *mHaze;
S32 lerp(F32& dt, S32& indx, const F32 h) const;
public:
LLTranspMapSet() : mHeights(NULL), mTransp(NULL), mHaze(NULL) {}
~LLTranspMapSet();
void init (S32 size, F32 first_step, F32 media_height, const LLHaze* const haze);
S32 getSize() const { return mSize; }
F32 getMediaHeight() const { return mMediaHeight; }
const LLTranspMap& getLastTransp() const { return mTransp[mSize-1]; }
F32 getLastHeight() const { return mHeights[mSize-1]; }
const LLTranspMap& getMap(const S32 n) const { return mTransp[n]; }
F32 getHeight(const S32 n) const { return mHeights[n]; }
BOOL isReady() const { return mTransp != NULL; }
inline LLColor3 calcTransp(const F32 cos_angle, const F32 h) const;
inline void calcTransp(const F32 cos_angle, const F32 h, LLColor3 &result) const;
};
class LLCubeMap;
class LLVOSky : public LLStaticViewerObject
{
public:
enum
{
FACE_SIDE0,
FACE_SIDE1,
FACE_SIDE2,
FACE_SIDE3,
FACE_SIDE4,
FACE_SIDE5,
FACE_SUN, // was 6
FACE_MOON, // was 7
FACE_BLOOM, // was 8
FACE_REFLECTION, // was 10
FACE_COUNT
};
LLVOSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp);
virtual ~LLVOSky();
// Initialize/delete data that's only inited once per class.
static void initClass();
void init();
void initCubeMap();
void initEmpty();
BOOL isReady() const { return mTransp.isReady(); }
const LLTranspMapSet& getTransp() const { return mTransp; }
void cleanupGL();
void restoreGL();
/*virtual*/ BOOL idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time);
BOOL updateSky();
// Graphical stuff for objects - maybe broken out into render class
// later?
/*virtual*/ void updateTextures(LLAgent &agent);
/*virtual*/ LLDrawable* createDrawable(LLPipeline *pipeline);
/*virtual*/ BOOL updateGeometry(LLDrawable *drawable);
void initSkyTextureDirs(const S32 side, const S32 tile);
void createSkyTexture(const S32 side, const S32 tile);
void updateBrightestDir();
void calcBrightnessScaleAndColors();
LLColor3 calcSkyColorInDir(const LLVector3& dir);
void calcSkyColorInDir(LLColor3& res, LLColor3& transp,
const LLVector3& dir) const;
LLColor4 calcInScatter(LLColor4& transp, const LLVector3 &point, F32 exag) const;
void calcInScatter( LLColor3& res, LLColor3& transp,
const LLVector3& P, F32 exag) const;
// Not currently used.
//LLColor3 calcGroundFog(LLColor3& transp, const LLVector3 &view_dir, F32 obj_dist) const;
//void calcGroundFog(LLColor3& res, LLColor3& transp, const LLVector3 view_dir, F32 dist) const;
LLColor3 calcRadianceAtPoint(const LLVector3& pos) const
{
const F32 cos_angle = calcUpVec(pos) * getToSunLast();
LLColor3 tr;
mTransp.calcTransp(cos_angle, calcHeight(pos), tr);
return mBrightnessScaleGuess * mSun.getIntensity() * tr;
}
const LLHeavenBody& getSun() const { return mSun; }
const LLHeavenBody& getMoon() const { return mMoon; }
const LLVector3& getToSunLast() const { return mSun.getDirectionCached(); }
const LLVector3& getToSun() const { return mSun.getDirection(); }
const LLVector3& getToMoon() const { return mMoon.getDirection(); }
const LLVector3& getToMoonLast() const { return mMoon.getDirectionCached(); }
BOOL isSunUp() const { return mSun.getDirectionCached().mV[2] > -0.05f; }
void calculateColors();
LLColor3 getSunDiffuseColor() const { return mSunDiffuse; }
LLColor3 getMoonDiffuseColor() const { return mMoonDiffuse; }
LLColor4 getSunAmbientColor() const { return mSunAmbient; }
LLColor4 getMoonAmbientColor() const { return mMoonAmbient; }
const LLColor4& getTotalAmbientColor() const { return mTotalAmbient; }
LLColor4 getFogColor() const { return mFogColor; }
LLColor4 getGLFogColor() const { return mGLFogCol; }
LLVector3 calcUpVec(const LLVector3 &pos) const
{
LLVector3 v = pos - mEarthCenter;
v.normVec();
return v;
}
F32 calcHeight(const LLVector3& pos) const
{
return dist_vec(pos, mEarthCenter) - EARTH_RADIUS;
}
// Phase function for atmospheric scattering.
// co = cos ( theta )
F32 calcAirPhaseFunc(const F32 co) const
{
return (0.75f * (1.f + co*co));
}
BOOL isSameFace(S32 idx, const LLFace* face) const { return mFace[idx] == face; }
void initSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity)
{
LLVector3 sun_direction = (sun_dir.magVec() == 0) ? LLVector3::x_axis : sun_dir;
sun_direction.normVec();
mSun.setDirection(sun_direction);
mSun.renewDirection();
mSun.setAngularVelocity(sun_ang_velocity);
mMoon.setDirection(-mSun.getDirection());
mMoon.renewDirection();
mLastLightingDirection = mSun.getDirection();
if ( !isReady() )
{
init();
LLSkyTex::stepCurrent();
}
}
void setSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity);
void updateHaze();
BOOL updateHeavenlyBodyGeometry(LLDrawable *drawable, const S32 side, const BOOL is_sun,
LLHeavenBody& hb, const F32 sin_max_angle,
const LLVector3 &up, const LLVector3 &right);
LLVector3 toHorizon(const LLVector3& dir, F32 delta = 0) const
{
return move_vec(dir, cosHorizon(delta));
}
F32 cosHorizon(const F32 delta = 0) const
{
const F32 sin_angle = EARTH_RADIUS/(EARTH_RADIUS + mCameraPosAgent.mV[2]);
return delta - (F32)sqrt(1.f - sin_angle * sin_angle);
}
void updateSunHaloGeometry(LLDrawable *drawable);
void updateReflectionGeometry(LLDrawable *drawable, F32 H, const LLHeavenBody& HB);
const LLHaze& getHaze() const { return mHaze; }
LLHaze& getHaze() { return mHaze; }
F32 getHazeConcentration() const { return mHazeConcentration; }
void setHaze(const LLHaze& h) { mHaze = h; }
F32 getWorldScale() const { return mWorldScale; }
void setWorldScale(const F32 s) { mWorldScale = s; }
void updateFog(const F32 distance);
void setFogRatio(const F32 fog_ratio) { mFogRatio = fog_ratio; }
LLColor4U getFadeColor() const { return mFadeColor; }
F32 getFogRatio() const { return mFogRatio; }
void setCloudDensity(F32 cloud_density) { mCloudDensity = cloud_density; }
void setWind ( const LLVector3& wind ) { mWind = wind.magVec(); }
const LLVector3 &getCameraPosAgent() const { return mCameraPosAgent; }
LLVector3 getEarthCenter() const { return mEarthCenter; }
LLCubeMap *getCubeMap() const { return mCubeMap; }
S32 getDrawRefl() const { return mDrawRefl; }
void setDrawRefl(const S32 r) { mDrawRefl = r; }
BOOL isReflFace(const LLFace* face) const { return face == mFace[FACE_REFLECTION]; }
LLFace* getReflFace() const { return mFace[FACE_REFLECTION]; }
F32 calcHitsEarth(const LLVector3& orig, const LLVector3& dir) const;
F32 calcHitsAtmEdge(const LLVector3& orig, const LLVector3& dir) const;
LLViewerImage* getSunTex() const { return mSunTexturep; }
LLViewerImage* getMoonTex() const { return mMoonTexturep; }
LLViewerImage* getBloomTex() const { return mBloomTexturep; }
void generateScatterMap();
LLImageGL* getScatterMap() { return mScatterMap; }
public:
static F32 sNighttimeBrightness; // [0,2] default = 1.0
LLFace *mFace[FACE_COUNT];
protected:
LLPointer<LLViewerImage> mSunTexturep;
LLPointer<LLViewerImage> mMoonTexturep;
LLPointer<LLViewerImage> mBloomTexturep;
static S32 sResolution;
static S32 sTileResX;
static S32 sTileResY;
LLSkyTex mSkyTex[6];
LLHeavenBody mSun;
LLHeavenBody mMoon;
LLVector3 mSunDefaultPosition;
LLVector3 mSunAngVel;
F32 mAtmHeight;
LLVector3 mEarthCenter;
LLVector3 mCameraPosAgent;
F32 mBrightnessScale;
LLColor3 mBrightestPoint;
F32 mBrightnessScaleNew;
LLColor3 mBrightestPointNew;
F32 mBrightnessScaleGuess;
LLColor3 mBrightestPointGuess;
LLTranspMapSet mTransp;
LLHaze mHaze;
F32 mHazeConcentration;
BOOL mWeatherChange;
F32 mCloudDensity;
F32 mWind;
BOOL mInitialized;
BOOL mForceUpdate; //flag to force instantaneous update of cubemap
LLVector3 mLastLightingDirection;
LLColor3 mLastTotalAmbient;
F32 mAmbientScale;
LLColor3 mNightColorShift;
F32 sInterpVal;
LLColor4 mFogColor;
LLColor4 mGLFogCol;
F32 mFogRatio;
F32 mWorldScale;
LLColor4 mSunAmbient;
LLColor4 mMoonAmbient;
LLColor4 mTotalAmbient;
LLColor3 mSunDiffuse;
LLColor3 mMoonDiffuse;
LLColor4U mFadeColor; // Color to fade in from
LLCubeMap *mCubeMap; // Cube map for the environment
S32 mDrawRefl;
LLFrameTimer mUpdateTimer;
LLPointer<LLImageGL> mScatterMap;
LLPointer<LLImageRaw> mScatterMapRaw;
};
// Utility functions
F32 azimuth(const LLVector3 &v);
F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply = FALSE);
/* Proportion of light that is scattered into 'path' from 'in' over distance dt. */
/* assumes that vectors 'path' and 'in' are normalized. Scattering coef / 2pi */
inline LLColor3 LLHaze::calcAirSca(const F32 h)
{
static const LLColor3 air_sca_sea_level = calcAirScaSeaLevel();
return calcFalloff(h) * air_sca_sea_level;
}
inline void LLHaze::calcAirSca(const F32 h, LLColor3 &result)
{
static const LLColor3 air_sca_sea_level = calcAirScaSeaLevel();
result = air_sca_sea_level;
result *= calcFalloff(h);
}
// Given cos of the angle between direction of interest and zenith,
// compute transparency by interpolation of known values.
inline void LLTranspMap::calcAirTransp(const F32 cos_angle, LLColor3 &result) const
{
if (cos_angle > 1.f)
{
result = mT[0];
return;
}
if (cos_angle < mCosMaxAngle - 0.1f)
{
result.setVec(0.f, 0.f, 0.f);
return;
}
if (cos_angle < mCosMaxAngle)
{
result = mT[mMapSize-1];
return;
}
const F32 relative = (1 - cos_angle)*mStepInv;
const S32 index = llfloor(relative);
const F32 dt = relative - index;
if (index >= (mMapSize-1))
{
result = mT[0];
return;
}
// result = mT[index];
// LLColor3 res2(mT[index+1]);
// result *= 1 - dt;
// res2 *= dt;
// result += res2;
const LLColor3& color1 = mT[index];
const LLColor3& color2 = mT[index + 1];
const F32 x1 = color1.mV[VX];
const F32 x2 = color2.mV[VX];
result.mV[VX] = x1 - dt * (x1 - x2);
const F32 y1 = color1.mV[VY];
const F32 y2 = color2.mV[VY];
result.mV[VY] = y1 - dt * (y1 - y2);
const F32 z1 = color1.mV[VZ];
const F32 z2 = color2.mV[VZ];
result.mV[VZ] = z1 - dt * (z1 - z2);
}
// Returns the translucency of the atmosphere along the ray in the sky.
// dir is assumed to be normalized
inline void LLTranspMapSet::calcTransp(const F32 cos_angle, const F32 h, LLColor3 &result) const
{
S32 indx = 0;
F32 dt = 0.f;
const S32 status = lerp(dt, indx, h);
if (status < 0)
{
mTransp[0].calcAirTransp(cos_angle, result);
return;
}
if (status > 0)
{
mTransp[NO_STEPS].calcAirTransp(cos_angle, result);
return;
}
mTransp[indx].calcAirTransp(cos_angle, result);
result *= 1 - dt;
LLColor3 transp_above;
mTransp[indx + 1].calcAirTransp(cos_angle, transp_above);
transp_above *= dt;
result += transp_above;
}
inline LLColor3 LLTranspMapSet::calcTransp(const F32 cos_angle, const F32 h) const
{
LLColor3 result;
S32 indx = 0;
F32 dt = 0;
const S32 status = lerp(dt, indx, h);
if (status < 0)
{
mTransp[0].calcAirTransp(cos_angle, result);
return result;
}
if (status > 0)
{
mTransp[NO_STEPS].calcAirTransp(cos_angle, result);
return result;
}
mTransp[indx].calcAirTransp(cos_angle, result);
result *= 1 - dt;
LLColor3 transp_above;
mTransp[indx + 1].calcAirTransp(cos_angle, transp_above);
transp_above *= dt;
result += transp_above;
return result;
}
// Returns -1 if height < 0; +1 if height > max height; 0 if within range
inline S32 LLTranspMapSet::lerp(F32& dt, S32& indx, const F32 h) const
{
static S32 last_indx = 0;
if (h < 0)
{
return -1;
}
if (h > getLastHeight())
{
return 1;
}
if (h < mHeights[last_indx])
{
indx = last_indx-1;
while (mHeights[indx] > h)
{
indx--;
}
last_indx = indx;
}
else if (h > mHeights[last_indx+1])
{
indx = last_indx+1;
while (mHeights[indx+1] < h)
{
indx++;
}
last_indx = indx;
}
else
{
indx = last_indx;
}
const F32 h_below = mHeights[indx];
const F32 h_above = mHeights[indx+1];
dt = (h - h_below) / (h_above - h_below);
return 0;
}
#endif
|