summaryrefslogtreecommitdiff
path: root/indra/newview/llvosky.cpp
blob: d4df1414773e20d17669da41bb972dc6b65b74fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
/** 
 * @file llvosky.cpp
 * @brief LLVOSky class implementation
 *
 * $LicenseInfo:firstyear=2001&license=viewergpl$
 * 
 * Copyright (c) 2001-2009, Linden Research, Inc.
 * 
 * Second Life Viewer Source Code
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at
 * http://secondlifegrid.net/programs/open_source/licensing/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 * $/LicenseInfo$
 */

#include "llviewerprecompiledheaders.h"

#include "llvosky.h"

#include "imageids.h"
#include "llfeaturemanager.h"
#include "llviewercontrol.h"
#include "llframetimer.h"
#include "timing.h"

#include "llagent.h"
#include "lldrawable.h"
#include "llface.h"
#include "llcubemap.h"
#include "lldrawpoolsky.h"
#include "lldrawpoolwater.h"
#include "llglheaders.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewerimagelist.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llworld.h"
#include "pipeline.h"
#include "lldrawpoolwlsky.h"
#include "llwlparammanager.h"
#include "llwaterparammanager.h"

#undef min
#undef max

static const S32 NUM_TILES_X = 8;
static const S32 NUM_TILES_Y = 4;
static const S32 NUM_TILES = NUM_TILES_X * NUM_TILES_Y;

// Heavenly body constants
static const F32 SUN_DISK_RADIUS	= 0.5f;
static const F32 MOON_DISK_RADIUS	= SUN_DISK_RADIUS * 0.9f;
static const F32 SUN_INTENSITY = 1e5;
static const F32 SUN_DISK_INTENSITY = 24.f;


// Texture coordinates:
static const LLVector2 TEX00 = LLVector2(0.f, 0.f);
static const LLVector2 TEX01 = LLVector2(0.f, 1.f);
static const LLVector2 TEX10 = LLVector2(1.f, 0.f);
static const LLVector2 TEX11 = LLVector2(1.f, 1.f);

// Exported globals
LLUUID gSunTextureID = IMG_SUN;
LLUUID gMoonTextureID = IMG_MOON;

//static 
LLColor3 LLHaze::sAirScaSeaLevel;

class LLFastLn
{
public:
	LLFastLn() 
	{
		mTable[0] = 0;
		for( S32 i = 1; i < 257; i++ )
		{
			mTable[i] = log((F32)i);
		}
	}

	F32 ln( F32 x )
	{
		const F32 OO_255 = 0.003921568627450980392156862745098f;
		const F32 LN_255 = 5.5412635451584261462455391880218f;

		if( x < OO_255 )
		{
			return log(x);
		}
		else
		if( x < 1 )
		{
			x *= 255.f;
			S32 index = llfloor(x);
			F32 t = x - index;
			F32 low = mTable[index];
			F32 high = mTable[index + 1];
			return low + t * (high - low) - LN_255;
		}
		else
		if( x <= 255 )
		{
			S32 index = llfloor(x);
			F32 t = x - index;
			F32 low = mTable[index];
			F32 high = mTable[index + 1];
			return low + t * (high - low);
		}
		else
		{
			return log( x );
		}
	}

	F32 pow( F32 x, F32 y )
	{
		return (F32)LL_FAST_EXP(y * ln(x));
	}


private:
	F32 mTable[257]; // index 0 is unused
};

static LLFastLn gFastLn;


// Functions used a lot.

inline F32 LLHaze::calcPhase(const F32 cos_theta) const
{
	const F32 g2 = mG * mG;
	const F32 den = 1 + g2 - 2 * mG * cos_theta;
	return (1 - g2) * gFastLn.pow(den, -1.5);
}

inline void color_pow(LLColor3 &col, const F32 e)
{
	col.mV[0] = gFastLn.pow(col.mV[0], e);
	col.mV[1] = gFastLn.pow(col.mV[1], e);
	col.mV[2] = gFastLn.pow(col.mV[2], e);
}

inline LLColor3 color_norm(const LLColor3 &col)
{
	const F32 m = color_max(col);
	if (m > 1.f)
	{
		return 1.f/m * col;
	}
	else return col;
}

inline void color_gamma_correct(LLColor3 &col)
{
	const F32 gamma_inv = 1.f/1.2f;
	if (col.mV[0] != 0.f)
	{
		col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv);
	}
	if (col.mV[1] != 0.f)
	{
		col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv);
	}
	if (col.mV[2] != 0.f)
	{
		col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv);
	}
}



/***************************************
		SkyTex
***************************************/

S32 LLSkyTex::sComponents = 4;
S32 LLSkyTex::sResolution = 64;
F32 LLSkyTex::sInterpVal = 0.f;
S32 LLSkyTex::sCurrent = 0;


LLSkyTex::LLSkyTex() :
	mSkyData(NULL),
	mSkyDirs(NULL)
{
}

void LLSkyTex::init()
{
	mSkyData = new LLColor4[sResolution * sResolution];
	mSkyDirs = new LLVector3[sResolution * sResolution];

	for (S32 i = 0; i < 2; ++i)
	{
		mImageGL[i] = new LLImageGL(FALSE);
		mImageGL[i]->setAddressMode(LLTexUnit::TAM_CLAMP);
		mImageRaw[i] = new LLImageRaw(sResolution, sResolution, sComponents);
		
		initEmpty(i);
	}
}

void LLSkyTex::cleanupGL()
{
	mImageGL[0] = NULL;
	mImageGL[1] = NULL;
}

void LLSkyTex::restoreGL()
{
	for (S32 i = 0; i < 2; i++)
	{
		mImageGL[i] = new LLImageGL(FALSE);
		mImageGL[i]->setAddressMode(LLTexUnit::TAM_CLAMP);
	}
}

LLSkyTex::~LLSkyTex()
{
	delete[] mSkyData;
	mSkyData = NULL;

	delete[] mSkyDirs;
	mSkyDirs = NULL;
}


void LLSkyTex::initEmpty(const S32 tex)
{
	U8* data = mImageRaw[tex]->getData();
	for (S32 i = 0; i < sResolution; ++i)
	{
		for (S32 j = 0; j < sResolution; ++j)
		{
			const S32 basic_offset = (i * sResolution + j);
			S32 offset = basic_offset * sComponents;
			data[offset] = 0;
			data[offset+1] = 0;
			data[offset+2] = 0;
			data[offset+3] = 255;

			mSkyData[basic_offset].setToBlack();
		}
	}

	createGLImage(tex);
}

void LLSkyTex::create(const F32 brightness)
{
	/// Brightness ignored for now.
	U8* data = mImageRaw[sCurrent]->getData();
	for (S32 i = 0; i < sResolution; ++i)
	{
		for (S32 j = 0; j < sResolution; ++j)
		{
			const S32 basic_offset = (i * sResolution + j);
			S32 offset = basic_offset * sComponents;
			U32* pix = (U32*)(data + offset);
			LLColor4U temp = LLColor4U(mSkyData[basic_offset]);
			*pix = temp.mAll;
		}
	}
	createGLImage(sCurrent);
}




void LLSkyTex::createGLImage(S32 which)
{	
	mImageGL[which]->createGLTexture(0, mImageRaw[which]);
	mImageGL[which]->setAddressMode(LLTexUnit::TAM_CLAMP);
}

void LLSkyTex::bindTexture(BOOL curr)
{
	gGL.getTexUnit(0)->bind(mImageGL[getWhich(curr)]);
}

/***************************************
		Sky
***************************************/

F32	LLHeavenBody::sInterpVal = 0;

S32 LLVOSky::sResolution = LLSkyTex::getResolution();
S32 LLVOSky::sTileResX = sResolution/NUM_TILES_X;
S32 LLVOSky::sTileResY = sResolution/NUM_TILES_Y;

LLVOSky::LLVOSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
:	LLStaticViewerObject(id, pcode, regionp, TRUE),
	mSun(SUN_DISK_RADIUS), mMoon(MOON_DISK_RADIUS),
	mBrightnessScale(1.f),
	mBrightnessScaleNew(0.f),
	mBrightnessScaleGuess(1.f),
	mWeatherChange(FALSE),
	mCloudDensity(0.2f),
	mWind(0.f),
	mForceUpdate(FALSE),
	mWorldScale(1.f),
	mBumpSunDir(0.f, 0.f, 1.f)
{
	bool error = false;
	
	/// WL PARAMS
	dome_radius = 1.f;
	dome_offset_ratio = 0.f;
	sunlight_color = LLColor3();
	ambient = LLColor3();
	gamma = 1.f;
	lightnorm = LLVector4();
	blue_density = LLColor3();
	blue_horizon = LLColor3();
	haze_density = 0.f;
	haze_horizon = LLColor3();
	density_multiplier = 0.f;
	max_y = 0.f;
	glow = LLColor3();
	cloud_shadow = 0.f;
	cloud_color = LLColor3();
	cloud_scale = 0.f;
	cloud_pos_density1 = LLColor3();
	cloud_pos_density2 = LLColor3();


	mInitialized = FALSE;
	mbCanSelect = FALSE;
	mUpdateTimer.reset();

	for (S32 i = 0; i < 6; i++)
	{
		mSkyTex[i].init();
		mShinyTex[i].init();
	}
	for (S32 i=0; i<FACE_COUNT; i++)
	{
		mFace[i] = NULL;
	}
	
	mCameraPosAgent = gAgent.getCameraPositionAgent();
	mAtmHeight = ATM_HEIGHT;
	mEarthCenter = LLVector3(mCameraPosAgent.mV[0], mCameraPosAgent.mV[1], -EARTH_RADIUS);

	mSunDefaultPosition = LLVector3(LLWLParamManager::instance()->mCurParams.getVector("lightnorm", error));
	if (gSavedSettings.getBOOL("SkyOverrideSimSunPosition"))
	{
		initSunDirection(mSunDefaultPosition, LLVector3(0, 0, 0));
	}
	mAmbientScale = gSavedSettings.getF32("SkyAmbientScale");
	mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift");
	mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f;
	mFogColor.mV[VALPHA] = 0.0f;
	mFogRatio = 1.2f;

	mSun.setIntensity(SUN_INTENSITY);
	mMoon.setIntensity(0.1f * SUN_INTENSITY);

	mSunTexturep = gImageList.getImage(gSunTextureID, TRUE, TRUE);
	mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
	mMoonTexturep = gImageList.getImage(gMoonTextureID, TRUE, TRUE);
	mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
	mBloomTexturep = gImageList.getImage(IMG_BLOOM1);
	mBloomTexturep->setNoDelete() ;
	mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);

	mHeavenlyBodyUpdated = FALSE ;
}


LLVOSky::~LLVOSky()
{
	// Don't delete images - it'll get deleted by gImageList on shutdown
	// This needs to be done for each texture

	mCubeMap = NULL;
}

void LLVOSky::initClass()
{
	LLHaze::initClass();
}


void LLVOSky::init()
{
   	const F32 haze_int = color_intens(mHaze.calcSigSca(0));
	mHazeConcentration = haze_int /
		(color_intens(LLHaze::calcAirSca(0)) + haze_int);

	calcAtmospherics();

	// Initialize the cached normalized direction vectors
	for (S32 side = 0; side < 6; ++side)
	{
		for (S32 tile = 0; tile < NUM_TILES; ++tile)
		{
			initSkyTextureDirs(side, tile);
			createSkyTexture(side, tile);
		}
	}

	for (S32 i = 0; i < 6; ++i)
	{
		mSkyTex[i].create(1.0f);
		mShinyTex[i].create(1.0f);
	}

	initCubeMap();
	mInitialized = true;

	mHeavenlyBodyUpdated = FALSE ;
}

void LLVOSky::initCubeMap() 
{
	std::vector<LLPointer<LLImageRaw> > images;
	for (S32 side = 0; side < 6; side++)
	{
		images.push_back(mShinyTex[side].getImageRaw());
	}
	if (mCubeMap)
	{
		mCubeMap->init(images);
	}
	else if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps)
	{
		mCubeMap = new LLCubeMap();
		mCubeMap->init(images);
	}
	gGL.getTexUnit(0)->disable();
}


void LLVOSky::cleanupGL()
{
	S32 i;
	for (i = 0; i < 6; i++)
	{
		mSkyTex[i].cleanupGL();
	}
	if (getCubeMap())
	{
		getCubeMap()->destroyGL();
	}
}

void LLVOSky::restoreGL()
{
	S32 i;
	for (i = 0; i < 6; i++)
	{
		mSkyTex[i].restoreGL();
	}
	mSunTexturep = gImageList.getImage(gSunTextureID, TRUE, TRUE);
	mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
	mMoonTexturep = gImageList.getImage(gMoonTextureID, TRUE, TRUE);
	mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
	mBloomTexturep = gImageList.getImage(IMG_BLOOM1);
	mBloomTexturep->setNoDelete() ;
	mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);

	calcAtmospherics();	

	if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap
	    && LLCubeMap::sUseCubeMaps)
	{
		LLCubeMap* cube_map = getCubeMap();

		std::vector<LLPointer<LLImageRaw> > images;
		for (S32 side = 0; side < 6; side++)
		{
			images.push_back(mShinyTex[side].getImageRaw());
		}

		if(cube_map)
		{
			cube_map->init(images);
			mForceUpdate = TRUE;
		}
	}

	if (mDrawable)
	{
		gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE);
	}

}

void LLVOSky::initSkyTextureDirs(const S32 side, const S32 tile)
{
	S32 tile_x = tile % NUM_TILES_X;
	S32 tile_y = tile / NUM_TILES_X;

	S32 tile_x_pos = tile_x * sTileResX;
	S32 tile_y_pos = tile_y * sTileResY;

	F32 coeff[3] = {0, 0, 0};
	const S32 curr_coef = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X
	const S32 side_dir = (((side & 1) << 1) - 1);  // even = -1, odd = 1
	const S32 x_coef = (curr_coef + 1) % 3;
	const S32 y_coef = (x_coef + 1) % 3;

	coeff[curr_coef] = (F32)side_dir;

	F32 inv_res = 1.f/sResolution;
	S32 x, y;
	for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y)
	{
		for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x)
		{
			coeff[x_coef] = F32((x<<1) + 1) * inv_res - 1.f;
			coeff[y_coef] = F32((y<<1) + 1) * inv_res - 1.f;
			LLVector3 dir(coeff[0], coeff[1], coeff[2]);
			dir.normalize();
			mSkyTex[side].setDir(dir, x, y);
			mShinyTex[side].setDir(dir, x, y);
		}
	}
}

void LLVOSky::createSkyTexture(const S32 side, const S32 tile)
{
	S32 tile_x = tile % NUM_TILES_X;
	S32 tile_y = tile / NUM_TILES_X;

	S32 tile_x_pos = tile_x * sTileResX;
	S32 tile_y_pos = tile_y * sTileResY;

	S32 x, y;
	for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y)
	{
		for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x)
		{
			mSkyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y)), x, y);
			mShinyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y), true), x, y);
		}
	}
}

static inline LLColor3 componentDiv(LLColor3 const &left, LLColor3 const & right)
{
	return LLColor3(left.mV[0]/right.mV[0],
					 left.mV[1]/right.mV[1],
					 left.mV[2]/right.mV[2]);
}


static inline LLColor3 componentMult(LLColor3 const &left, LLColor3 const & right)
{
	return LLColor3(left.mV[0]*right.mV[0],
					 left.mV[1]*right.mV[1],
					 left.mV[2]*right.mV[2]);
}


static inline LLColor3 componentExp(LLColor3 const &v)
{
	return LLColor3(exp(v.mV[0]),
					 exp(v.mV[1]),
					 exp(v.mV[2]));
}

static inline LLColor3 componentPow(LLColor3 const &v, F32 exponent)
{
	return LLColor3(pow(v.mV[0], exponent),
					pow(v.mV[1], exponent),
					pow(v.mV[2], exponent));
}

static inline LLColor3 componentSaturate(LLColor3 const &v)
{
	return LLColor3(std::max(std::min(v.mV[0], 1.f), 0.f),
					 std::max(std::min(v.mV[1], 1.f), 0.f),
					 std::max(std::min(v.mV[2], 1.f), 0.f));
}


static inline LLColor3 componentSqrt(LLColor3 const &v)
{
	return LLColor3(sqrt(v.mV[0]),
					 sqrt(v.mV[1]),
					 sqrt(v.mV[2]));
}

static inline void componentMultBy(LLColor3 & left, LLColor3 const & right)
{
	left.mV[0] *= right.mV[0];
	left.mV[1] *= right.mV[1];
	left.mV[2] *= right.mV[2];
}

static inline LLColor3 colorMix(LLColor3 const & left, LLColor3 const & right, F32 amount)
{
	return (left + ((right - left) * amount));
}

static inline F32 texture2D(LLPointer<LLImageRaw> const & tex, LLVector2 const & uv)
{
	U16 w = tex->getWidth();
	U16 h = tex->getHeight();

	U16 r = U16(uv[0] * w) % w;
	U16 c = U16(uv[1] * h) % h;

	U8 const * imageBuffer = tex->getData();

	U8 sample = imageBuffer[r * w + c];

	return sample / 255.f;
}

static inline LLColor3 smear(F32 val)
{
	return LLColor3(val, val, val);
}

void LLVOSky::initAtmospherics(void)
{	
	bool error;
	
	// uniform parameters for convenience
	dome_radius = LLWLParamManager::instance()->getDomeRadius();
	dome_offset_ratio = LLWLParamManager::instance()->getDomeOffset();
	sunlight_color = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("sunlight_color", error));
	ambient = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("ambient", error));
	//lightnorm = LLWLParamManager::instance()->mCurParams.getVector("lightnorm", error);
	gamma = LLWLParamManager::instance()->mCurParams.getVector("gamma", error)[0];
	blue_density = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("blue_density", error));
	blue_horizon = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("blue_horizon", error));
	haze_density = LLWLParamManager::instance()->mCurParams.getVector("haze_density", error)[0];
	haze_horizon = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("haze_horizon", error));
	density_multiplier = LLWLParamManager::instance()->mCurParams.getVector("density_multiplier", error)[0];
	max_y = LLWLParamManager::instance()->mCurParams.getVector("max_y", error)[0];
	glow = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("glow", error));
	cloud_shadow = LLWLParamManager::instance()->mCurParams.getVector("cloud_shadow", error)[0];
	cloud_color = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("cloud_color", error));
	cloud_scale = LLWLParamManager::instance()->mCurParams.getVector("cloud_scale", error)[0];
	cloud_pos_density1 = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("cloud_pos_density1", error));
	cloud_pos_density2 = LLColor3(LLWLParamManager::instance()->mCurParams.getVector("cloud_pos_density2", error));

	// light norm is different.  We need the sun's direction, not the light direction
	// which could be from the moon.  And we need to clamp it
	// just like for the gpu
	LLVector3 sunDir = gSky.getSunDirection();

	// CFR_TO_OGL
	lightnorm = LLVector4(sunDir.mV[1], sunDir.mV[2], sunDir.mV[0], 0);
	unclamped_lightnorm = lightnorm;
	if(lightnorm.mV[1] < -0.1f)
	{
		lightnorm.mV[1] = -0.1f;
	}
	
}

LLColor4 LLVOSky::calcSkyColorInDir(const LLVector3 &dir, bool isShiny)
{
	F32 saturation = 0.3f;
	if (dir.mV[VZ] < -0.02f)
	{
		LLColor4 col = LLColor4(llmax(mFogColor[0],0.2f), llmax(mFogColor[1],0.2f), llmax(mFogColor[2],0.22f),0.f);
		if (isShiny)
		{
			LLColor3 desat_fog = LLColor3(mFogColor);
			F32 brightness = desat_fog.brightness();
			// So that shiny somewhat shows up at night.
			if (brightness < 0.15f)
			{
				brightness = 0.15f;
				desat_fog = smear(0.15f);
			}
			LLColor3 greyscale = smear(brightness);
			desat_fog = desat_fog * saturation + greyscale * (1.0f - saturation);
			if (!gPipeline.canUseWindLightShaders())
			{
				col = LLColor4(desat_fog, 0.f);
			}
			else 
			{
				col = LLColor4(desat_fog * 0.5f, 0.f);
			}
		}
		float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]);
		x *= x;
		col.mV[0] *= x*x;
		col.mV[1] *= powf(x, 2.5f);
		col.mV[2] *= x*x*x;
		return col;
	}

	// undo OGL_TO_CFR_ROTATION and negate vertical direction.
	LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]);

	LLColor3 vary_HazeColor(0,0,0);
	LLColor3 vary_CloudColorSun(0,0,0);
	LLColor3 vary_CloudColorAmbient(0,0,0);
	F32 vary_CloudDensity(0);
	LLVector2 vary_HorizontalProjection[2];
	vary_HorizontalProjection[0] = LLVector2(0,0);
	vary_HorizontalProjection[1] = LLVector2(0,0);

	calcSkyColorWLVert(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient,
						vary_CloudDensity, vary_HorizontalProjection);
	
	LLColor3 sky_color =  calcSkyColorWLFrag(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient, 
								vary_CloudDensity, vary_HorizontalProjection);
	if (isShiny)
	{
		F32 brightness = sky_color.brightness();
		LLColor3 greyscale = smear(brightness);
		sky_color = sky_color * saturation + greyscale * (1.0f - saturation);
		sky_color *= (0.5f + 0.5f * brightness);
	}
	return LLColor4(sky_color, 0.0f);
}

// turn on floating point precision
// in vs2003 for this function.  Otherwise
// sky is aliased looking 7:10 - 8:50
#if LL_MSVC && __MSVC_VER__ < 8
#pragma optimize("p", on)
#endif

void LLVOSky::calcSkyColorWLVert(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun, 
							LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity, 
							LLVector2 vary_HorizontalProjection[2])
{
	// project the direction ray onto the sky dome.
	F32 phi = acos(Pn[1]);
	F32 sinA = sin(F_PI - phi);
	F32 Plen = dome_radius * sin(F_PI + phi + asin(dome_offset_ratio * sinA)) / sinA;

	Pn *= Plen;

	vary_HorizontalProjection[0] = LLVector2(Pn[0], Pn[2]);
	vary_HorizontalProjection[0] /= - 2.f * Plen;

	// Set altitude
	if (Pn[1] > 0.f)
	{
		Pn *= (max_y / Pn[1]);
	}
	else
	{
		Pn *= (-32000.f / Pn[1]);
	}

	Plen = Pn.length();
	Pn /= Plen;

	// Initialize temp variables
	LLColor3 sunlight = sunlight_color;

	// Sunlight attenuation effect (hue and brightness) due to atmosphere
	// this is used later for sunlight modulation at various altitudes
	LLColor3 light_atten =
		(blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y);

	// Calculate relative weights
	LLColor3 temp2(0.f, 0.f, 0.f);
	LLColor3 temp1 = blue_density + smear(haze_density);
	LLColor3 blue_weight = componentDiv(blue_density, temp1);
	LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);

	// Compute sunlight from P & lightnorm (for long rays like sky)
	temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] );

	temp2.mV[1] = 1.f / temp2.mV[1];
	componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));

	// Distance
	temp2.mV[2] = Plen * density_multiplier;

	// Transparency (-> temp1)
	temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);


	// Compute haze glow
	temp2.mV[0] = Pn * LLVector3(lightnorm);

	temp2.mV[0] = 1.f - temp2.mV[0];
		// temp2.x is 0 at the sun and increases away from sun
	temp2.mV[0] = llmax(temp2.mV[0], .001f);	
		// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
	temp2.mV[0] *= glow.mV[0];
		// Higher glow.x gives dimmer glow (because next step is 1 / "angle")
	temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]);
		// glow.z should be negative, so we're doing a sort of (1 / "angle") function

	// Add "minimum anti-solar illumination"
	temp2.mV[0] += .25f;


	// Haze color above cloud
	vary_HazeColor = (blue_horizon * blue_weight * (sunlight + ambient)
				+ componentMult(haze_horizon.mV[0] * haze_weight, sunlight * temp2.mV[0] + ambient)
			 );	

	// Increase ambient when there are more clouds
	LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f;

	// Dim sunlight by cloud shadow percentage
	sunlight *= (1.f - cloud_shadow);

	// Haze color below cloud
	LLColor3 additiveColorBelowCloud = (blue_horizon * blue_weight * (sunlight + tmpAmbient)
				+ componentMult(haze_horizon.mV[0] * haze_weight, sunlight * temp2.mV[0] + tmpAmbient)
			 );	

	// Final atmosphere additive
	componentMultBy(vary_HazeColor, LLColor3::white - temp1);

	sunlight = sunlight_color;
	temp2.mV[1] = llmax(0.f, lightnorm[1] * 2.f);
	temp2.mV[1] = 1.f / temp2.mV[1];
	componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));

	// Attenuate cloud color by atmosphere
	temp1 = componentSqrt(temp1);	//less atmos opacity (more transparency) below clouds

	// At horizon, blend high altitude sky color towards the darker color below the clouds
	vary_HazeColor +=
		componentMult(additiveColorBelowCloud - vary_HazeColor, LLColor3::white - componentSqrt(temp1));
		
	if (Pn[1] < 0.f)
	{
		// Eric's original: 
		// LLColor3 dark_brown(0.143f, 0.129f, 0.114f);
		LLColor3 dark_brown(0.082f, 0.076f, 0.066f);
		LLColor3 brown(0.430f, 0.386f, 0.322f);
		LLColor3 sky_lighting = sunlight + ambient;
		F32 haze_brightness = vary_HazeColor.brightness();

		if (Pn[1] < -0.05f)
		{
			vary_HazeColor = colorMix(dark_brown, brown, -Pn[1] * 0.9f) * sky_lighting * haze_brightness;
		}
		
		if (Pn[1] > -0.1f)
		{
			vary_HazeColor = colorMix(LLColor3::white * haze_brightness, vary_HazeColor, fabs((Pn[1] + 0.05f) * -20.f));
		}
	}
}

#if LL_MSVC && __MSVC_VER__ < 8
#pragma optimize("p", off)
#endif

LLColor3 LLVOSky::calcSkyColorWLFrag(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun, 
							LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity, 
							LLVector2 vary_HorizontalProjection[2])
{
	LLColor3 res;

	LLColor3 color0 = vary_HazeColor;
	
	if (!gPipeline.canUseWindLightShaders())
	{
		LLColor3 color1 = color0 * 2.0f;
		color1 = smear(1.f) - componentSaturate(color1);
		componentPow(color1, gamma);
		res = smear(1.f) - color1;
	} 
	else 
	{
		res = color0;
	}

#	ifndef LL_RELEASE_FOR_DOWNLOAD

	LLColor3 color2 = 2.f * color0;

	LLColor3 color3 = LLColor3(1.f, 1.f, 1.f) - componentSaturate(color2);
	componentPow(color3, gamma);
	color3 = LLColor3(1.f, 1.f, 1.f) - color3;

	static enum {
		OUT_DEFAULT		= 0,
		OUT_SKY_BLUE	= 1,
		OUT_RED			= 2,
		OUT_PN			= 3,
		OUT_HAZE		= 4,
	} debugOut = OUT_DEFAULT;

	switch(debugOut) 
	{
		case OUT_DEFAULT:
			break;
		case OUT_SKY_BLUE:
			res = LLColor3(0.4f, 0.4f, 0.9f);
			break;
		case OUT_RED:
			res = LLColor3(1.f, 0.f, 0.f);
			break;
		case OUT_PN:
			res = LLColor3(Pn[0], Pn[1], Pn[2]);
			break;
		case OUT_HAZE:
			res = vary_HazeColor;
			break;
	}
#	endif // LL_RELEASE_FOR_DOWNLOAD
	return res;
}

LLColor3 LLVOSky::createDiffuseFromWL(LLColor3 diffuse, LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient)
{
	return componentMult(diffuse, sundiffuse) * 4.0f +
			componentMult(ambient, sundiffuse) * 2.0f + sunambient;
}

LLColor3 LLVOSky::createAmbientFromWL(LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient)
{
	return (componentMult(ambient, sundiffuse) + sunambient) * 0.8f;
}


void LLVOSky::calcAtmospherics(void)
{
	initAtmospherics();

	LLColor3 vary_HazeColor;
	LLColor3 vary_SunlightColor;
	LLColor3 vary_AmbientColor;
	{
		// Initialize temp variables
		LLColor3 sunlight = sunlight_color;

		// Sunlight attenuation effect (hue and brightness) due to atmosphere
		// this is used later for sunlight modulation at various altitudes
		LLColor3 light_atten =
			(blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y);

		// Calculate relative weights
		LLColor3 temp2(0.f, 0.f, 0.f);
		LLColor3 temp1 = blue_density + smear(haze_density);
		LLColor3 blue_weight = componentDiv(blue_density, temp1);
		LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);

		// Compute sunlight from P & lightnorm (for long rays like sky)
		/// USE only lightnorm.
		// temp2[1] = llmax(0.f, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] );
		
		// and vary_sunlight will work properly with moon light
		F32 lighty = unclamped_lightnorm[1];
		if(lighty < NIGHTTIME_ELEVATION_COS)
		{
			lighty = -lighty;
		}

		temp2.mV[1] = llmax(0.f, lighty);
		temp2.mV[1] = 1.f / temp2.mV[1];
		componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));

		// Distance
		temp2.mV[2] = density_multiplier;

		// Transparency (-> temp1)
		temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);

		// vary_AtmosAttenuation = temp1; 

		//increase ambient when there are more clouds
		LLColor3 tmpAmbient = ambient + (smear(1.f) - ambient) * cloud_shadow * 0.5f;

		//haze color
		vary_HazeColor =
			(blue_horizon * blue_weight * (sunlight*(1.f - cloud_shadow) + tmpAmbient)	
			+ componentMult(haze_horizon.mV[0] * haze_weight, sunlight*(1.f - cloud_shadow) * temp2.mV[0] + tmpAmbient)
				 );	

		//brightness of surface both sunlight and ambient
		vary_SunlightColor = componentMult(sunlight, temp1) * 1.f;
		vary_SunlightColor.clamp();
		vary_SunlightColor = smear(1.0f) - vary_SunlightColor;
		vary_SunlightColor = componentPow(vary_SunlightColor, gamma);
		vary_SunlightColor = smear(1.0f) - vary_SunlightColor;
		vary_AmbientColor = componentMult(tmpAmbient, temp1) * 0.5;
		vary_AmbientColor.clamp();
		vary_AmbientColor = smear(1.0f) - vary_AmbientColor;
		vary_AmbientColor = componentPow(vary_AmbientColor, gamma);
		vary_AmbientColor = smear(1.0f) - vary_AmbientColor;

		componentMultBy(vary_HazeColor, LLColor3(1.f, 1.f, 1.f) - temp1);

	}

	mSun.setColor(vary_SunlightColor);
	mMoon.setColor(LLColor3(1.0f, 1.0f, 1.0f));

	mSun.renewDirection();
	mSun.renewColor();
	mMoon.renewDirection();
	mMoon.renewColor();

	float dp = getToSunLast() * LLVector3(0,0,1.f);
	if (dp < 0)
	{
		dp = 0;
	}

	// Since WL scales everything by 2, there should always be at least a 2:1 brightness ratio
	// between sunlight and point lights in windlight to normalize point lights.
	F32 sun_dynamic_range = llmax(gSavedSettings.getF32("RenderSunDynamicRange"), 0.0001f);
	LLWLParamManager::instance()->mSceneLightStrength = 2.0f * (1.0f + sun_dynamic_range * dp);

	mSunDiffuse = vary_SunlightColor;
	mSunAmbient = vary_AmbientColor;
	mMoonDiffuse = vary_SunlightColor;
	mMoonAmbient = vary_AmbientColor;

	mTotalAmbient = vary_AmbientColor;
	mTotalAmbient.setAlpha(1);
	
	mFadeColor = mTotalAmbient + (mSunDiffuse + mMoonDiffuse) * 0.5f;
	mFadeColor.setAlpha(0);
}

BOOL LLVOSky::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time)
{
	return TRUE;
}

BOOL LLVOSky::updateSky()
{
	if (mDead || !(gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY)))
	{
		return TRUE;
	}
	
	if (mDead)
	{
		// It's dead.  Don't update it.
		return TRUE;
	}
	if (gGLManager.mIsDisabled)
	{
		return TRUE;
	}

	static S32 next_frame = 0;
	const S32 total_no_tiles = 6 * NUM_TILES;
	const S32 cycle_frame_no = total_no_tiles + 1;

	if (mUpdateTimer.getElapsedTimeF32() > 0.001f)
	{
		mUpdateTimer.reset();
		const S32 frame = next_frame;

		++next_frame;
		next_frame = next_frame % cycle_frame_no;

		sInterpVal = (!mInitialized) ? 1 : (F32)next_frame / cycle_frame_no;
		// sInterpVal = (F32)next_frame / cycle_frame_no;
		LLSkyTex::setInterpVal( sInterpVal );
		LLHeavenBody::setInterpVal( sInterpVal );
		calcAtmospherics();

		if (mForceUpdate || total_no_tiles == frame)
		{
			LLSkyTex::stepCurrent();
			
			const static F32 LIGHT_DIRECTION_THRESHOLD = (F32) cos(DEG_TO_RAD * 1.f);
			const static F32 COLOR_CHANGE_THRESHOLD = 0.01f;

			LLVector3 direction = mSun.getDirection();
			direction.normalize();
			const F32 dot_lighting = direction * mLastLightingDirection;

			LLColor3 delta_color;
			delta_color.setVec(mLastTotalAmbient.mV[0] - mTotalAmbient.mV[0],
							   mLastTotalAmbient.mV[1] - mTotalAmbient.mV[1],
							   mLastTotalAmbient.mV[2] - mTotalAmbient.mV[2]);

			if ( mForceUpdate 
				 || ((dot_lighting < LIGHT_DIRECTION_THRESHOLD)
				 || (delta_color.length() > COLOR_CHANGE_THRESHOLD)
				 || !mInitialized)
				&& !direction.isExactlyZero())
			{
				mLastLightingDirection = direction;
				mLastTotalAmbient = mTotalAmbient;
				mInitialized = TRUE;

				if (mCubeMap)
				{
                    if (mForceUpdate)
					{
						updateFog(LLViewerCamera::getInstance()->getFar());
						for (int side = 0; side < 6; side++) 
						{
							for (int tile = 0; tile < NUM_TILES; tile++) 
							{
								createSkyTexture(side, tile);
							}
						}

						calcAtmospherics();

						for (int side = 0; side < 6; side++) 
						{
							LLImageRaw* raw1 = mSkyTex[side].getImageRaw(TRUE);
							LLImageRaw* raw2 = mSkyTex[side].getImageRaw(FALSE);
							raw2->copy(raw1);
							mSkyTex[side].createGLImage(mSkyTex[side].getWhich(FALSE));

							raw1 = mShinyTex[side].getImageRaw(TRUE);
							raw2 = mShinyTex[side].getImageRaw(FALSE);
							raw2->copy(raw1);
							mShinyTex[side].createGLImage(mShinyTex[side].getWhich(FALSE));
						}
						next_frame = 0;	
					}
				}
			}

			/// *TODO really, sky texture and env map should be shared on a single texture
			/// I'll let Brad take this at some point

			// update the sky texture
			for (S32 i = 0; i < 6; ++i)
			{
				mSkyTex[i].create(1.0f);
				mShinyTex[i].create(1.0f);
			}
			
			// update the environment map
			if (mCubeMap)
			{
				std::vector<LLPointer<LLImageRaw> > images;
				images.reserve(6);
				for (S32 side = 0; side < 6; side++)
				{
					images.push_back(mShinyTex[side].getImageRaw(TRUE));
				}
				mCubeMap->init(images);
				gGL.getTexUnit(0)->disable();
			}

			gPipeline.markRebuild(gSky.mVOGroundp->mDrawable, LLDrawable::REBUILD_ALL, TRUE);
			// *TODO: decide whether we need to update the stars vertex buffer in LLVOWLSky -Brad.
			//gPipeline.markRebuild(gSky.mVOWLSkyp->mDrawable, LLDrawable::REBUILD_ALL, TRUE);

			mForceUpdate = FALSE;
		}
		else
		{
			const S32 side = frame / NUM_TILES;
			const S32 tile = frame % NUM_TILES;
			createSkyTexture(side, tile);
		}
	}

	if (mDrawable.notNull() && mDrawable->getFace(0) && mDrawable->getFace(0)->mVertexBuffer.isNull())
	{
		gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE);
	}
	return TRUE;
}

void LLVOSky::updateTextures(LLAgent &agent)
{
	if (mSunTexturep)
	{
		mSunTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
		mMoonTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
		mBloomTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
	}
}

LLDrawable *LLVOSky::createDrawable(LLPipeline *pipeline)
{
	pipeline->allocDrawable(this);
	mDrawable->setLit(FALSE);

	LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY);
	poolp->setSkyTex(mSkyTex);
	mDrawable->setRenderType(LLPipeline::RENDER_TYPE_SKY);
	
	for (S32 i = 0; i < 6; ++i)
	{
		mFace[FACE_SIDE0 + i] = mDrawable->addFace(poolp, NULL);
	}

	mFace[FACE_SUN] = mDrawable->addFace(poolp, mSunTexturep);
	mFace[FACE_MOON] = mDrawable->addFace(poolp, mMoonTexturep);
	mFace[FACE_BLOOM] = mDrawable->addFace(poolp, mBloomTexturep);

	return mDrawable;
}

//by bao
//fake vertex buffer updating
//to guarantee at least updating one VBO buffer every frame
//to walk around the bug caused by ATI card --> DEV-3855
//
void LLVOSky::createDummyVertexBuffer()
{
	if(!mFace[FACE_DUMMY])
	{
		LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY);
		mFace[FACE_DUMMY] = mDrawable->addFace(poolp, NULL);
	}

	if(mFace[FACE_DUMMY]->mVertexBuffer.isNull())
	{
		mFace[FACE_DUMMY]->mVertexBuffer = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_DYNAMIC_DRAW_ARB);
		mFace[FACE_DUMMY]->mVertexBuffer->allocateBuffer(1, 1, TRUE);
	}
}

void LLVOSky::updateDummyVertexBuffer()
{	
	if(!LLVertexBuffer::sEnableVBOs)
		return ;

	if(mHeavenlyBodyUpdated)
	{
		mHeavenlyBodyUpdated = FALSE ;
		return ;
	}

	LLFastTimer t(LLFastTimer::FTM_RENDER_FAKE_VBO_UPDATE) ;

	if(!mFace[FACE_DUMMY] || mFace[FACE_DUMMY]->mVertexBuffer.isNull())
		createDummyVertexBuffer() ;

	LLStrider<LLVector3> vertices ;
	mFace[FACE_DUMMY]->mVertexBuffer->getVertexStrider(vertices,  0);
	*vertices = mCameraPosAgent ;
	mFace[FACE_DUMMY]->mVertexBuffer->setBuffer(0) ;
}
//----------------------------------
//end of fake vertex buffer updating
//----------------------------------

BOOL LLVOSky::updateGeometry(LLDrawable *drawable)
{
	LLFastTimer ftm(LLFastTimer::FTM_GEO_SKY);
	if (mFace[FACE_REFLECTION] == NULL)
	{
		LLDrawPoolWater *poolp = (LLDrawPoolWater*) gPipeline.getPool(LLDrawPool::POOL_WATER);
		if (gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() != 0)
		{
			mFace[FACE_REFLECTION] = drawable->addFace(poolp, NULL);
		}
	}

	mCameraPosAgent = drawable->getPositionAgent();
	mEarthCenter.mV[0] = mCameraPosAgent.mV[0];
	mEarthCenter.mV[1] = mCameraPosAgent.mV[1];

	LLVector3 v_agent[8];
	for (S32 i = 0; i < 8; ++i)
	{
		F32 x_sgn = (i&1) ? 1.f : -1.f;
		F32 y_sgn = (i&2) ? 1.f : -1.f;
		F32 z_sgn = (i&4) ? 1.f : -1.f;
		v_agent[i] = HORIZON_DIST * SKY_BOX_MULT * LLVector3(x_sgn, y_sgn, z_sgn);
	}

	LLStrider<LLVector3> verticesp;
	LLStrider<LLVector3> normalsp;
	LLStrider<LLVector2> texCoordsp;
	LLStrider<U16> indicesp;
	U16 index_offset;
	LLFace *face;	

	for (S32 side = 0; side < 6; ++side)
	{
		face = mFace[FACE_SIDE0 + side]; 

		if (face->mVertexBuffer.isNull())
		{
			face->setSize(4, 6);
			face->setGeomIndex(0);
			face->setIndicesIndex(0);
			face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
			face->mVertexBuffer->allocateBuffer(4, 6, TRUE);
			
			index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
			
			S32 vtx = 0;
			S32 curr_bit = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X
			S32 side_dir = side & 1;  // even - 0, odd - 1
			S32 i_bit = (curr_bit + 2) % 3;
			S32 j_bit = (i_bit + 2) % 3;

			LLVector3 axis;
			axis.mV[curr_bit] = 1;
			face->mCenterAgent = (F32)((side_dir << 1) - 1) * axis * HORIZON_DIST;

			vtx = side_dir << curr_bit;
			*(verticesp++)  = v_agent[vtx];
			*(verticesp++)  = v_agent[vtx | 1 << j_bit];
			*(verticesp++)  = v_agent[vtx | 1 << i_bit];
			*(verticesp++)  = v_agent[vtx | 1 << i_bit | 1 << j_bit];

			*(texCoordsp++) = TEX00;
			*(texCoordsp++) = TEX01;
			*(texCoordsp++) = TEX10;
			*(texCoordsp++) = TEX11;

			// Triangles for each side
			*indicesp++ = index_offset + 0;
			*indicesp++ = index_offset + 1;
			*indicesp++ = index_offset + 3;

			*indicesp++ = index_offset + 0;
			*indicesp++ = index_offset + 3;
			*indicesp++ = index_offset + 2;

			face->mVertexBuffer->setBuffer(0);
		}
	}

	const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis();
	LLVector3 right = look_at % LLVector3::z_axis;
	LLVector3 up = right % look_at;
	right.normalize();
	up.normalize();

	const static F32 elevation_factor = 0.0f/sResolution;
	const F32 cos_max_angle = cosHorizon(elevation_factor);
	mSun.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_SUN, TRUE, mSun, cos_max_angle, up, right));
	mMoon.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_MOON, FALSE, mMoon, cos_max_angle, up, right));

	const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.01f;
		// LLWorld::getInstance()->getWaterHeight() + 0.01f;
	const F32 camera_height = mCameraPosAgent.mV[2];
	const F32 height_above_water = camera_height - water_height;

	BOOL sun_flag = FALSE;

	if (mSun.isVisible())
	{
		if (mMoon.isVisible())
		{
			sun_flag = look_at * mSun.getDirection() > 0;
		}
		else
		{
			sun_flag = TRUE;
		}
	}
	
	if (height_above_water > 0)
	{
		BOOL render_ref = gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() == 0;

		if (sun_flag)
		{
			setDrawRefl(0);
			if (render_ref)
			{
				updateReflectionGeometry(drawable, height_above_water, mSun);
			}
		}
		else
		{
			setDrawRefl(1);
			if (render_ref)
			{
				updateReflectionGeometry(drawable, height_above_water, mMoon);
			}
		}
	}
	else
	{
		setDrawRefl(-1);
	}

	LLPipeline::sCompiles++;
	return TRUE;
}

BOOL LLVOSky::updateHeavenlyBodyGeometry(LLDrawable *drawable, const S32 f, const BOOL is_sun,
										 LLHeavenBody& hb, const F32 cos_max_angle,
										 const LLVector3 &up, const LLVector3 &right)
{
	mHeavenlyBodyUpdated = TRUE ;

	LLStrider<LLVector3> verticesp;
	LLStrider<LLVector3> normalsp;
	LLStrider<LLVector2> texCoordsp;
	LLStrider<U16> indicesp;
	S32 index_offset;
	LLFace *facep;

	LLVector3 to_dir = hb.getDirection();

	if (!is_sun)
	{
		to_dir.mV[2] = llmax(to_dir.mV[2]+0.1f, 0.1f);
	}
	LLVector3 draw_pos = to_dir * HEAVENLY_BODY_DIST;


	LLVector3 hb_right = to_dir % LLVector3::z_axis;
	LLVector3 hb_up = hb_right % to_dir;
	hb_right.normalize();
	hb_up.normalize();

	//const static F32 cos_max_turn = sqrt(3.f) / 2; // 30 degrees
	//const F32 cos_turn_right = 1. / (llmax(cos_max_turn, hb_right * right));
	//const F32 cos_turn_up = 1. / llmax(cos_max_turn, hb_up * up);

	const F32 enlargm_factor = ( 1 - to_dir.mV[2] );
	F32 horiz_enlargement = 1 + enlargm_factor * 0.3f;
	F32 vert_enlargement = 1 + enlargm_factor * 0.2f;

	// Parameters for the water reflection
	hb.setU(HEAVENLY_BODY_FACTOR * horiz_enlargement * hb.getDiskRadius() * hb_right);
	hb.setV(HEAVENLY_BODY_FACTOR * vert_enlargement * hb.getDiskRadius() * hb_up);
	// End of parameters for the water reflection

	const LLVector3 scaled_right = HEAVENLY_BODY_DIST * hb.getU();
	const LLVector3 scaled_up = HEAVENLY_BODY_DIST * hb.getV();

	//const LLVector3 scaled_right = horiz_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_right;//right;
	//const LLVector3 scaled_up = vert_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_up;//up;
	LLVector3 v_clipped[4];

	hb.corner(0) = draw_pos - scaled_right + scaled_up;
	hb.corner(1) = draw_pos - scaled_right - scaled_up;
	hb.corner(2) = draw_pos + scaled_right + scaled_up;
	hb.corner(3) = draw_pos + scaled_right - scaled_up;


	F32 t_left, t_right;
	if (!clip_quad_to_horizon(t_left, t_right, v_clipped, hb.corners(), cos_max_angle))
	{
		hb.setVisible(FALSE);
		return FALSE;
	}
	hb.setVisible(TRUE);

	facep = mFace[f]; 

	if (facep->mVertexBuffer.isNull())
	{
		facep->setSize(4, 6);		
		facep->mVertexBuffer = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
		facep->mVertexBuffer->allocateBuffer(facep->getGeomCount(), facep->getIndicesCount(), TRUE);
		facep->setGeomIndex(0);
		facep->setIndicesIndex(0);
	}

	index_offset = facep->getGeometry(verticesp,normalsp,texCoordsp, indicesp);

	if (-1 == index_offset)
	{
		return TRUE;
	}

	for (S32 vtx = 0; vtx < 4; ++vtx)
	{
		hb.corner(vtx) = v_clipped[vtx];
		*(verticesp++)  = hb.corner(vtx) + mCameraPosAgent;
	}

	*(texCoordsp++) = TEX01;
	*(texCoordsp++) = TEX00;
	*(texCoordsp++) = TEX11;
	*(texCoordsp++) = TEX10;

	*indicesp++ = index_offset + 0;
	*indicesp++ = index_offset + 2;
	*indicesp++ = index_offset + 1;

	*indicesp++ = index_offset + 1;
	*indicesp++ = index_offset + 2;
	*indicesp++ = index_offset + 3;

	facep->mVertexBuffer->setBuffer(0);

	if (is_sun)
	{
		if ((t_left > 0) && (t_right > 0))
		{
			F32 t = (t_left + t_right) * 0.5f;
			mSun.setHorizonVisibility(0.5f * (1 + cos(t * F_PI)));
		}
		else
		{
			mSun.setHorizonVisibility();
		}
		updateSunHaloGeometry(drawable);
	}

	return TRUE;
}




// Clips quads with top and bottom sides parallel to horizon.

BOOL clip_quad_to_horizon(F32& t_left, F32& t_right, LLVector3 v_clipped[4],
						  const LLVector3 v_corner[4], const F32 cos_max_angle)
{
	t_left = clip_side_to_horizon(v_corner[1], v_corner[0], cos_max_angle);
	t_right = clip_side_to_horizon(v_corner[3], v_corner[2], cos_max_angle);

	if ((t_left >= 1) || (t_right >= 1))
	{
		return FALSE;
	}

	//const BOOL left_clip = (t_left > 0);
	//const BOOL right_clip = (t_right > 0);

	//if (!left_clip && !right_clip)
	{
		for (S32 vtx = 0; vtx < 4; ++vtx)
		{
			v_clipped[vtx]  = v_corner[vtx];
		}
	}
/*	else
	{
		v_clipped[0] = v_corner[0];
		v_clipped[1] = left_clip ? ((1 - t_left) * v_corner[1] + t_left * v_corner[0])
									: v_corner[1];
		v_clipped[2] = v_corner[2];
		v_clipped[3] = right_clip ? ((1 - t_right) * v_corner[3] + t_right * v_corner[2])
									: v_corner[3];
	}*/

	return TRUE;
}


F32 clip_side_to_horizon(const LLVector3& V0, const LLVector3& V1, const F32 cos_max_angle)
{
	const LLVector3 V = V1 - V0;
	const F32 k2 = 1.f/(cos_max_angle * cos_max_angle) - 1;
	const F32 A = V.mV[0] * V.mV[0] + V.mV[1] * V.mV[1] - k2 * V.mV[2] * V.mV[2];
	const F32 B = V0.mV[0] * V.mV[0] + V0.mV[1] * V.mV[1] - k2 * V0.mV[2] * V.mV[2];
	const F32 C = V0.mV[0] * V0.mV[0] + V0.mV[1] * V0.mV[1] - k2 * V0.mV[2] * V0.mV[2];

	if (fabs(A) < 1e-7)
	{
		return -0.1f;	// v0 is cone origin and v1 is on the surface of the cone.
	}

	const F32 det = sqrt(B*B - A*C);
	const F32 t1 = (-B - det) / A;
	const F32 t2 = (-B + det) / A;
	const F32 z1 = V0.mV[2] + t1 * V.mV[2];
	const F32 z2 = V0.mV[2] + t2 * V.mV[2];
	if (z1 * cos_max_angle < 0)
	{
		return t2;
	}
	else if (z2 * cos_max_angle < 0)
	{
		return t1;
	}
	else if ((t1 < 0) || (t1 > 1))
	{
		return t2;
	}
	else
	{
		return t1;
	}
}


void LLVOSky::updateSunHaloGeometry(LLDrawable *drawable )
{
#if 0
	const LLVector3* v_corner = mSun.corners();

	LLStrider<LLVector3> verticesp;
	LLStrider<LLVector3> normalsp;
	LLStrider<LLVector2> texCoordsp;
	LLStrider<U16> indicesp;
	S32 index_offset;
	LLFace *face;

	const LLVector3 right = 2 * (v_corner[2] - v_corner[0]);
	LLVector3 up = 2 * (v_corner[2] - v_corner[3]);
	up.normalize();
	F32 size = right.length();
	up = size * up;
	const LLVector3 draw_pos = 0.25 * (v_corner[0] + v_corner[1] + v_corner[2] + v_corner[3]);
	
	LLVector3 v_glow_corner[4];

	v_glow_corner[0] = draw_pos - right + up;
	v_glow_corner[1] = draw_pos - right - up;
	v_glow_corner[2] = draw_pos + right + up;
	v_glow_corner[3] = draw_pos + right - up;

	face = mFace[FACE_BLOOM]; 

	if (face->mVertexBuffer.isNull())
	{
		face->setSize(4, 6);
		face->setGeomIndex(0);
		face->setIndicesIndex(0);
		face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
		face->mVertexBuffer->allocateBuffer(4, 6, TRUE);
	}

	index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
	if (-1 == index_offset)
	{
		return;
	}

	for (S32 vtx = 0; vtx < 4; ++vtx)
	{
		*(verticesp++)  = v_glow_corner[vtx] + mCameraPosAgent;
	}

	*(texCoordsp++) = TEX01;
	*(texCoordsp++) = TEX00;
	*(texCoordsp++) = TEX11;
	*(texCoordsp++) = TEX10;

	*indicesp++ = index_offset + 0;
	*indicesp++ = index_offset + 2;
	*indicesp++ = index_offset + 1;

	*indicesp++ = index_offset + 1;
	*indicesp++ = index_offset + 2;
	*indicesp++ = index_offset + 3;
#endif
}


F32 dtReflection(const LLVector3& p, F32 cos_dir_from_top, F32 sin_dir_from_top, F32 diff_angl_dir)
{
	LLVector3 P = p;
	P.normalize();

	const F32 cos_dir_angle = -P.mV[VZ];
	const F32 sin_dir_angle = sqrt(1 - cos_dir_angle * cos_dir_angle);

	F32 cos_diff_angles = cos_dir_angle * cos_dir_from_top
									+ sin_dir_angle * sin_dir_from_top;

	F32 diff_angles;
	if (cos_diff_angles > (1 - 1e-7))
		diff_angles = 0;
	else
		diff_angles = acos(cos_diff_angles);

	const F32 rel_diff_angles = diff_angles / diff_angl_dir;
	const F32 dt = 1 - rel_diff_angles;

	return (dt < 0) ? 0 : dt;
}


F32 dtClip(const LLVector3& v0, const LLVector3& v1, F32 far_clip2)
{
	F32 dt_clip;
	const LLVector3 otrezok = v1 - v0;
	const F32 A = otrezok.lengthSquared();
	const F32 B = v0 * otrezok;
	const F32 C = v0.lengthSquared() - far_clip2;
	const F32 det = sqrt(B*B - A*C);
	dt_clip = (-B - det) / A;
	if ((dt_clip < 0) || (dt_clip > 1))
		dt_clip = (-B + det) / A;
	return dt_clip;
}


void LLVOSky::updateReflectionGeometry(LLDrawable *drawable, F32 H,
										 const LLHeavenBody& HB)
{
	const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis();
	// const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.001f;
	// LLWorld::getInstance()->getWaterHeight() + 0.001f;

	LLVector3 to_dir = HB.getDirection();
	LLVector3 hb_pos = to_dir * (HORIZON_DIST - 10);
	LLVector3 to_dir_proj = to_dir;
	to_dir_proj.mV[VZ] = 0;
	to_dir_proj.normalize();

	LLVector3 Right = to_dir % LLVector3::z_axis;
	LLVector3 Up = Right % to_dir;
	Right.normalize();
	Up.normalize();

	// finding angle between  look direction and sprite.
	LLVector3 look_at_right = look_at % LLVector3::z_axis;
	look_at_right.normalize();

	const static F32 cos_horizon_angle = cosHorizon(0.0f/sResolution);
	//const static F32 horizon_angle = acos(cos_horizon_angle);

	const F32 enlargm_factor = ( 1 - to_dir.mV[2] );
	F32 horiz_enlargement = 1 + enlargm_factor * 0.3f;
	F32 vert_enlargement = 1 + enlargm_factor * 0.2f;

	F32 vert_size = vert_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius();
	Right *= /*cos_lookAt_toDir */ horiz_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius();
	Up *= vert_size;

	LLVector3 v_corner[2];
	LLVector3 stretch_corner[2];

	LLVector3 top_hb = v_corner[0] = stretch_corner[0] = hb_pos - Right + Up;
	v_corner[1] = stretch_corner[1] = hb_pos - Right - Up;

	F32 dt_hor, dt;
	dt_hor = clip_side_to_horizon(v_corner[1], v_corner[0], cos_horizon_angle);

	LLVector2 TEX0t = TEX00;
	LLVector2 TEX1t = TEX10;
	LLVector3 lower_corner = v_corner[1];

	if ((dt_hor > 0) && (dt_hor < 1))
	{
		TEX0t = LLVector2(0, dt_hor);
		TEX1t = LLVector2(1, dt_hor);
		lower_corner = (1 - dt_hor) * v_corner[1] + dt_hor * v_corner[0];
	}
	else
		dt_hor = llmax(0.0f, llmin(1.0f, dt_hor));

	top_hb.normalize();
	const F32 cos_angle_of_view = fabs(top_hb.mV[VZ]);
	const F32 extension = llmin (5.0f, 1.0f / cos_angle_of_view);

	const S32 cols = 1;
	const S32 raws = lltrunc(16 * extension);
	S32 quads = cols * raws;

	stretch_corner[0] = lower_corner + extension * (stretch_corner[0] - lower_corner);
	stretch_corner[1] = lower_corner + extension * (stretch_corner[1] - lower_corner);

	dt = dt_hor;


	F32 cos_dir_from_top[2];

	LLVector3 dir = stretch_corner[0];
	dir.normalize();
	cos_dir_from_top[0] = dir.mV[VZ];

	dir = stretch_corner[1];
	dir.normalize();
	cos_dir_from_top[1] = dir.mV[VZ];

	const F32 sin_dir_from_top = sqrt(1 - cos_dir_from_top[0] * cos_dir_from_top[0]);
	const F32 sin_dir_from_top2 = sqrt(1 - cos_dir_from_top[1] * cos_dir_from_top[1]);
	const F32 cos_diff_dir = cos_dir_from_top[0] * cos_dir_from_top[1]
							+ sin_dir_from_top * sin_dir_from_top2;
	const F32 diff_angl_dir = acos(cos_diff_dir);

	v_corner[0] = stretch_corner[0];
	v_corner[1] = lower_corner;


	LLVector2 TEX0tt = TEX01;
	LLVector2 TEX1tt = TEX11;

	LLVector3 v_refl_corner[4];
	LLVector3 v_sprite_corner[4];

	S32 vtx;
	for (vtx = 0; vtx < 2; ++vtx)
	{
		LLVector3 light_proj = v_corner[vtx];
		light_proj.normalize();

		const F32 z = light_proj.mV[VZ];
		const F32 sin_angle = sqrt(1 - z * z);
		light_proj *= 1.f / sin_angle;
		light_proj.mV[VZ] = 0;
		const F32 to_refl_point = H * sin_angle / fabs(z);

		v_refl_corner[vtx] = to_refl_point * light_proj;
	}


	for (vtx = 2; vtx < 4; ++vtx)
	{
		const LLVector3 to_dir_vec = (to_dir_proj * v_refl_corner[vtx-2]) * to_dir_proj;
		v_refl_corner[vtx] = v_refl_corner[vtx-2] + 2 * (to_dir_vec - v_refl_corner[vtx-2]);
	}

	for (vtx = 0; vtx < 4; ++vtx)
		v_refl_corner[vtx].mV[VZ] -= H;

	S32 side = 0;
	LLVector3 refl_corn_norm[2];
	refl_corn_norm[0] = v_refl_corner[1];
	refl_corn_norm[0].normalize();
	refl_corn_norm[1] = v_refl_corner[3];
	refl_corn_norm[1].normalize();

	F32 cos_refl_look_at[2];
	cos_refl_look_at[0] = refl_corn_norm[0] * look_at;
	cos_refl_look_at[1] = refl_corn_norm[1] * look_at;

	if (cos_refl_look_at[1] > cos_refl_look_at[0])
	{
		side = 2;
	}

	//const F32 far_clip = (LLViewerCamera::getInstance()->getFar() - 0.01) / far_clip_factor;
	const F32 far_clip = 512;
	const F32 far_clip2 = far_clip*far_clip;

	F32 dt_clip;
	F32 vtx_near2, vtx_far2;

	if ((vtx_far2 = v_refl_corner[side].lengthSquared()) > far_clip2)
	{
		// whole thing is sprite: reflection is beyond far clip plane.
		dt_clip = 1.1f;
		quads = 1;
	}
	else if ((vtx_near2 = v_refl_corner[side+1].lengthSquared()) > far_clip2)
	{
		// part is reflection, the rest is sprite.
		dt_clip = dtClip(v_refl_corner[side + 1], v_refl_corner[side], far_clip2);
		const LLVector3 P = (1 - dt_clip) * v_refl_corner[side + 1] + dt_clip * v_refl_corner[side];

		F32 dt_tex = dtReflection(P, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir);

		dt = dt_tex;
		TEX0tt = LLVector2(0, dt);
		TEX1tt = LLVector2(1, dt);
		quads++;
	}
	else
	{
		// whole thing is correct reflection.
		dt_clip = -0.1f;
	}

	LLFace *face = mFace[FACE_REFLECTION]; 

	if (face->mVertexBuffer.isNull() || quads*4 != face->getGeomCount())
	{
		face->setSize(quads * 4, quads * 6);
		face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
		face->mVertexBuffer->allocateBuffer(face->getGeomCount(), face->getIndicesCount(), TRUE);
		face->setIndicesIndex(0);
		face->setGeomIndex(0);
	}
	
	LLStrider<LLVector3> verticesp;
	LLStrider<LLVector3> normalsp;
	LLStrider<LLVector2> texCoordsp;
	LLStrider<U16> indicesp;
	S32 index_offset;
	
	index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
	if (-1 == index_offset)
	{
		return;
	}

	LLColor3 hb_col3 = HB.getInterpColor();
	hb_col3.clamp();
	const LLColor4 hb_col = LLColor4(hb_col3);

	const F32 min_attenuation = 0.4f;
	const F32 max_attenuation = 0.7f;
	const F32 attenuation = min_attenuation
		+ cos_angle_of_view * (max_attenuation - min_attenuation);

	LLColor4 hb_refl_col = (1-attenuation) * hb_col + attenuation * mFogColor;
	face->setFaceColor(hb_refl_col);
	
	LLVector3 v_far[2];
	v_far[0] = v_refl_corner[1];
	v_far[1] = v_refl_corner[3];

	if(dt_clip > 0)
	{
		if (dt_clip >= 1)
		{
			for (S32 vtx = 0; vtx < 4; ++vtx)
			{
				F32 ratio = far_clip / v_refl_corner[vtx].length();
				*(verticesp++) = v_refl_corner[vtx] = ratio * v_refl_corner[vtx] + mCameraPosAgent;
			}
			const LLVector3 draw_pos = 0.25 *
				(v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]);
			face->mCenterAgent = draw_pos;
		}
		else
		{
			F32 ratio = far_clip / v_refl_corner[1].length();
			v_sprite_corner[1] = v_refl_corner[1] * ratio;

			ratio = far_clip / v_refl_corner[3].length();
			v_sprite_corner[3] = v_refl_corner[3] * ratio;

			v_refl_corner[1] = (1 - dt_clip) * v_refl_corner[1] + dt_clip * v_refl_corner[0];
			v_refl_corner[3] = (1 - dt_clip) * v_refl_corner[3] + dt_clip * v_refl_corner[2];
			v_sprite_corner[0] = v_refl_corner[1];
			v_sprite_corner[2] = v_refl_corner[3];

			for (S32 vtx = 0; vtx < 4; ++vtx)
			{
				*(verticesp++) = v_sprite_corner[vtx] + mCameraPosAgent;
			}

			const LLVector3 draw_pos = 0.25 *
				(v_refl_corner[0] + v_sprite_corner[1] + v_refl_corner[2] + v_sprite_corner[3]);
			face->mCenterAgent = draw_pos;
		}

		*(texCoordsp++) = TEX0tt;
		*(texCoordsp++) = TEX0t;
		*(texCoordsp++) = TEX1tt;
		*(texCoordsp++) = TEX1t;

		*indicesp++ = index_offset + 0;
		*indicesp++ = index_offset + 2;
		*indicesp++ = index_offset + 1;

		*indicesp++ = index_offset + 1;
		*indicesp++ = index_offset + 2;
		*indicesp++ = index_offset + 3;

		index_offset += 4;
	}

	if (dt_clip < 1)
	{
		if (dt_clip <= 0)
		{
			const LLVector3 draw_pos = 0.25 *
				(v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]);
			face->mCenterAgent = draw_pos;
		}

		const F32 raws_inv = 1.f/raws;
		const F32 cols_inv = 1.f/cols;
		LLVector3 left	= v_refl_corner[0] - v_refl_corner[1];
		LLVector3 right = v_refl_corner[2] - v_refl_corner[3];
		left *= raws_inv;
		right *= raws_inv;

		F32 dt_raw = dt;

		for (S32 raw = 0; raw < raws; ++raw)
		{
			F32 dt_v0 = raw * raws_inv;
			F32 dt_v1 = (raw + 1) * raws_inv;
			const LLVector3 BL = v_refl_corner[1] + (F32)raw * left;
			const LLVector3 BR = v_refl_corner[3] + (F32)raw * right;
			const LLVector3 EL = BL + left;
			const LLVector3 ER = BR + right;
			dt_v0 = dt_raw;
			dt_raw = dt_v1 = dtReflection(EL, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir);
			for (S32 col = 0; col < cols; ++col)
			{
				F32 dt_h0 = col * cols_inv;
				*(verticesp++) = (1 - dt_h0) * EL + dt_h0 * ER + mCameraPosAgent;
				*(verticesp++) = (1 - dt_h0) * BL + dt_h0 * BR + mCameraPosAgent;
				F32 dt_h1 = (col + 1) * cols_inv;
				*(verticesp++) = (1 - dt_h1) * EL + dt_h1 * ER + mCameraPosAgent;
				*(verticesp++) = (1 - dt_h1) * BL + dt_h1 * BR + mCameraPosAgent;

				*(texCoordsp++) = LLVector2(dt_h0, dt_v1);
				*(texCoordsp++) = LLVector2(dt_h0, dt_v0);
				*(texCoordsp++) = LLVector2(dt_h1, dt_v1);
				*(texCoordsp++) = LLVector2(dt_h1, dt_v0);

				*indicesp++ = index_offset + 0;
				*indicesp++ = index_offset + 2;
				*indicesp++ = index_offset + 1;

				*indicesp++ = index_offset + 1;
				*indicesp++ = index_offset + 2;
				*indicesp++ = index_offset + 3;

				index_offset += 4;
			}
		}
	}

	face->mVertexBuffer->setBuffer(0);
}




void LLVOSky::updateFog(const F32 distance)
{
	if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG))
	{
		glFogf(GL_FOG_DENSITY, 0);
		glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV);
		glFogf(GL_FOG_END, 1000000.f);
		return;
	}

	const BOOL hide_clip_plane = TRUE;
	LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f);

	const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f;
	// LLWorld::getInstance()->getWaterHeight();
	F32 camera_height = gAgent.getCameraPositionAgent().mV[2];

	F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear();
	camera_height += near_clip_height;

	F32 fog_distance = 0.f;
	LLColor3 res_color[3];

	LLColor3 sky_fog_color = LLColor3::white;
	LLColor3 render_fog_color = LLColor3::white;

	LLVector3 tosun = getToSunLast();
	const F32 tosun_z = tosun.mV[VZ];
	tosun.mV[VZ] = 0.f;
	tosun.normalize();
	LLVector3 perp_tosun;
	perp_tosun.mV[VX] = -tosun.mV[VY];
	perp_tosun.mV[VY] = tosun.mV[VX];
	LLVector3 tosun_45 = tosun + perp_tosun;
	tosun_45.normalize();

	F32 delta = 0.06f;
	tosun.mV[VZ] = delta;
	perp_tosun.mV[VZ] = delta;
	tosun_45.mV[VZ] = delta;
	tosun.normalize();
	perp_tosun.normalize();
	tosun_45.normalize();

	// Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun.
	initAtmospherics();
	res_color[0] = calcSkyColorInDir(tosun);
	res_color[1] = calcSkyColorInDir(perp_tosun);
	res_color[2] = calcSkyColorInDir(tosun_45);

	sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]);

	F32 full_off = -0.25f;
	F32 full_on = 0.00f;
	F32 on = (tosun_z - full_off) / (full_on - full_off);
	on = llclamp(on, 0.01f, 1.f);
	sky_fog_color *= 0.5f * on;


	// We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ???
	S32 i;
	for (i = 0; i < 3; i++)
	{
		sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]);
	}

	color_gamma_correct(sky_fog_color);

	render_fog_color = sky_fog_color;

	F32 fog_density = 0.f;
	fog_distance = mFogRatio * distance;
	
	if (camera_height > water_height)
	{
		LLColor4 fog(render_fog_color);
		glFogfv(GL_FOG_COLOR, fog.mV);
		mGLFogCol = fog;

		if (hide_clip_plane)
		{
			// For now, set the density to extend to the cull distance.
			const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f)))
			fog_density = f_log/fog_distance;
			glFogi(GL_FOG_MODE, GL_EXP2);
		}
		else
		{
			const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f))
			fog_density = (f_log)/fog_distance;
			glFogi(GL_FOG_MODE, GL_EXP);
		}
	}
	else
	{
		F32 depth = water_height - camera_height;
		
		// get the water param manager variables
		float water_fog_density = LLWaterParamManager::instance()->getFogDensity();
		LLColor4 water_fog_color = LLDrawPoolWater::sWaterFogColor.mV;
		
		// adjust the color based on depth.  We're doing linear approximations
		float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale");
		float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f), 
			gSavedSettings.getF32("WaterGLFogDepthFloor"));

		LLColor4 fogCol = water_fog_color * depth_modifier;
		fogCol.setAlpha(1);

		// set the gl fog color
		glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV);
		mGLFogCol = fogCol;

		// set the density based on what the shaders use
		fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale");
		glFogi(GL_FOG_MODE, GL_EXP2);
	}

	mFogColor = sky_fog_color;
	mFogColor.setAlpha(1);
	LLGLSFog gls_fog;

	glFogf(GL_FOG_END, fog_distance*2.2f);

	glFogf(GL_FOG_DENSITY, fog_density);

	glHint(GL_FOG_HINT, GL_NICEST);
	stop_glerror();
}

// static
void LLHaze::initClass()
{
	sAirScaSeaLevel = LLHaze::calcAirScaSeaLevel();
}



// Functions used a lot.


F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply)
{
	F32 mv = color_max(col);
	if (0 == mv)
	{
		return 0;
	}

	col *= 1.f / mv;
	color_pow(col, e);
	if (postmultiply)
	{
		col *= mv;
	}
	return mv;
}

// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis.
// Range of output is 0.0f to 2pi //359.99999...f
// Returns 0.0f when "v" = +/- z_axis.
F32 azimuth(const LLVector3 &v)
{
	F32 azimuth = 0.0f;
	if (v.mV[VX] == 0.0f)
	{
		if (v.mV[VY] > 0.0f)
		{
			azimuth = F_PI * 0.5f;
		}
		else if (v.mV[VY] < 0.0f)
		{
			azimuth = F_PI * 1.5f;// 270.f;
		}
	}
	else
	{
		azimuth = (F32) atan(v.mV[VY] / v.mV[VX]);
		if (v.mV[VX] < 0.0f)
		{
			azimuth += F_PI;
		}
		else if (v.mV[VY] < 0.0f)
		{
			azimuth += F_PI * 2;
		}
	}	
	return azimuth;
}

void LLVOSky::initSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity)
{
	LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir;
	sun_direction.normalize();
	mSun.setDirection(sun_direction);
	mSun.renewDirection();
	mSun.setAngularVelocity(sun_ang_velocity);
	mMoon.setDirection(-mSun.getDirection());
	mMoon.renewDirection();
	mLastLightingDirection = mSun.getDirection();

	calcAtmospherics();

	if ( !mInitialized )
	{
		init();
		LLSkyTex::stepCurrent();
	}		
}

void LLVOSky::setSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity)
{
	LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir;
	sun_direction.normalize();

	// Push the sun "South" as it approaches directly overhead so that we can always see bump mapping
	// on the upward facing faces of cubes.
	LLVector3 newDir = sun_direction;

	// Same as dot product with the up direction + clamp.
	F32 sunDot = llmax(0.f, newDir.mV[2]);
	sunDot *= sunDot;	

	// Create normalized vector that has the sunDir pushed south about an hour and change.
	LLVector3 adjustedDir = (newDir + LLVector3(0.f, -0.70711f, 0.70711f)) * 0.5f;

	// Blend between normal sun dir and adjusted sun dir based on how close we are
	// to having the sun overhead.
	mBumpSunDir = adjustedDir * sunDot + newDir * (1.0f - sunDot);
	mBumpSunDir.normalize();

	F32 dp = mLastLightingDirection * sun_direction;
	mSun.setDirection(sun_direction);
	mSun.setAngularVelocity(sun_ang_velocity);
	mMoon.setDirection(-sun_direction);
	calcAtmospherics();
	if (dp < 0.995f) { //the sun jumped a great deal, update immediately
		mForceUpdate = TRUE;
	}
}