1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/**
* @file llphysicsshapebuilder.cpp
* @brief Generic system to convert LL(Physics)VolumeParams to physics shapes
* @author falcon@lindenlab.com
*
* $LicenseInfo:firstyear=2010&license=internal$
*
* Copyright (c) 2010, Linden Research, Inc.
*
* The following source code is PROPRIETARY AND CONFIDENTIAL. Use of
* this source code is governed by the Linden Lab Source Code Disclosure
* Agreement ("Agreement") previously entered between you and Linden
* Lab. By accessing, using, copying, modifying or distributing this
* software, you acknowledge that you have been informed of your
* obligations under the Agreement and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llphysicsshapebuilderutil.h"
/* static */
void LLPhysicsShapeBuilderUtil::determinePhysicsShape( const LLPhysicsVolumeParams& volume_params, const LLVector3& scale, PhysicsShapeSpecification& specOut )
{
const LLProfileParams& profile_params = volume_params.getProfileParams();
const LLPathParams& path_params = volume_params.getPathParams();
specOut.mScale = scale;
const F32 avgScale = ( scale[VX] + scale[VY] + scale[VZ] )/3.0f;
// count the scale elements that are small
S32 min_size_counts = 0;
for (S32 i = 0; i < 3; ++i)
{
if (scale[i] < SHAPE_BUILDER_CONVEXIFICATION_SIZE)
{
++min_size_counts;
}
}
const bool profile_complete = ( profile_params.getBegin() <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale ) &&
( profile_params.getEnd() >= (1.0f - SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale) );
const bool path_complete = ( path_params.getBegin() <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale ) &&
( path_params.getEnd() >= (1.0f - SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale) );
const bool simple_params = ( volume_params.getHollow() <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_HOLLOW/avgScale )
&& ( fabs(path_params.getShearX()) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_SHEAR/avgScale )
&& ( fabs(path_params.getShearY()) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_SHEAR/avgScale )
&& ( !volume_params.isMeshSculpt() && !volume_params.isSculpt() );
if (simple_params && profile_complete)
{
// Try to create an implicit shape or convexified
bool no_taper = ( fabs(path_params.getScaleX() - 1.0f) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_TAPER/avgScale )
&& ( fabs(path_params.getScaleY() - 1.0f) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_TAPER/avgScale );
bool no_twist = ( fabs(path_params.getTwistBegin()) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_TWIST/avgScale )
&& ( fabs(path_params.getTwistEnd()) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_TWIST/avgScale);
// Box
if(
( profile_params.getCurveType() == LL_PCODE_PROFILE_SQUARE )
&& ( path_params.getCurveType() == LL_PCODE_PATH_LINE )
&& no_taper
&& no_twist
)
{
specOut.mType = PhysicsShapeSpecification::BOX;
if ( path_complete )
{
return;
}
else
{
// Side lengths
specOut.mScale[VX] = llmax( scale[VX], SHAPE_BUILDER_MIN_GEOMETRY_SIZE );
specOut.mScale[VY] = llmax( scale[VY], SHAPE_BUILDER_MIN_GEOMETRY_SIZE );
specOut.mScale[VZ] = llmax( scale[VZ] * (path_params.getEnd() - path_params.getBegin()), SHAPE_BUILDER_MIN_GEOMETRY_SIZE );
specOut.mCenter.set( 0.f, 0.f, 0.5f * scale[VZ] * ( path_params.getEnd() + path_params.getBegin() - 1.0f ) );
return;
}
}
// Sphere
if( path_complete
&& ( profile_params.getCurveType() == LL_PCODE_PROFILE_CIRCLE_HALF )
&& ( path_params.getCurveType() == LL_PCODE_PATH_CIRCLE )
&& ( fabs(volume_params.getTaper()) <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_TAPER/avgScale )
&& no_twist
)
{
if ( ( scale[VX] == scale[VZ] )
&& ( scale[VY] == scale[VZ] ) )
{
// perfect sphere
specOut.mType = PhysicsShapeSpecification::SPHERE;
specOut.mScale = scale;
return;
}
else if (min_size_counts > 1)
{
// small or narrow sphere -- we can boxify
for (S32 i=0; i<3; ++i)
{
if (specOut.mScale[i] < SHAPE_BUILDER_CONVEXIFICATION_SIZE)
{
// reduce each small dimension size to split the approximation errors
specOut.mScale[i] *= 0.75f;
}
}
specOut.mType = PhysicsShapeSpecification::BOX;
return;
}
}
// Cylinder
if( (scale[VX] == scale[VY])
&& ( profile_params.getCurveType() == LL_PCODE_PROFILE_CIRCLE )
&& ( path_params.getCurveType() == LL_PCODE_PATH_LINE )
&& ( volume_params.getBeginS() <= SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale )
&& ( volume_params.getEndS() >= (1.0f - SHAPE_BUILDER_IMPLICIT_THRESHOLD_PATH_CUT/avgScale) )
&& no_taper
)
{
if (min_size_counts > 1)
{
// small or narrow sphere -- we can boxify
for (S32 i=0; i<3; ++i)
{
if (specOut.mScale[i] < SHAPE_BUILDER_CONVEXIFICATION_SIZE)
{
// reduce each small dimension size to split the approximation errors
specOut.mScale[i] *= 0.75f;
}
}
specOut.mType = PhysicsShapeSpecification::BOX;
}
else
{
specOut.mType = PhysicsShapeSpecification::CYLINDER;
F32 length = (volume_params.getPathParams().getEnd() - volume_params.getPathParams().getBegin()) * scale[VZ];
specOut.mScale[VY] = specOut.mScale[VX];
specOut.mScale[VZ] = length;
// The minus one below fixes the fact that begin and end range from 0 to 1 not -1 to 1.
specOut.mCenter.set( 0.f, 0.f, 0.5f * (volume_params.getPathParams().getBegin() + volume_params.getPathParams().getEnd() - 1.f) * scale[VZ] );
}
return;
}
}
if ( (min_size_counts == 3 )
// Possible dead code here--who wants to take it out?
|| (path_complete
&& profile_complete
&& ( path_params.getCurveType() == LL_PCODE_PATH_LINE )
&& (min_size_counts > 1 ) )
)
{
// it isn't simple but
// we might be able to convexify this shape if the path and profile are complete
// or the path is linear and both path and profile are complete --> we can boxify it
specOut.mType = PhysicsShapeSpecification::BOX;
specOut.mScale = scale;
return;
}
// Special case for big, very thin objects - bump the small dimensions up to the COLLISION_TOLERANCE
if (min_size_counts == 1 // One dimension is small
&& avgScale > 3.f) // ... but others are fairly large
{
for (S32 i = 0; i < 3; ++i)
{
specOut.mScale[i] = llmax( specOut.mScale[i], COLLISION_TOLERANCE );
}
}
if ( volume_params.shouldForceConvex() )
{
specOut.mType = PhysicsShapeSpecification::USER_CONVEX;
}
// Make a simpler convex shape if we can.
else if (volume_params.isConvex() // is convex
|| min_size_counts > 1 ) // two or more small dimensions
{
specOut.mType = PhysicsShapeSpecification::PRIM_CONVEX;
}
else if ( volume_params.isSculpt() ) // Is a sculpt of any kind (mesh or legacy)
{
specOut.mType = volume_params.isMeshSculpt() ? PhysicsShapeSpecification::USER_MESH : PhysicsShapeSpecification::SCULPT;
}
else // Resort to mesh
{
specOut.mType = PhysicsShapeSpecification::PRIM_MESH;
}
}
|