summaryrefslogtreecommitdiff
path: root/indra/newview/llgltfmaterialpreviewmgr.cpp
blob: f473afb74cdce4830496a8bfdf9cca03c550a76e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/**
 * @file llgltfmaterialpreviewmgr.cpp
 *
 * $LicenseInfo:firstyear=2023&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2023, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "llviewerprecompiledheaders.h"

#include "llgltfmaterialpreviewmgr.h"

#include <memory>
#include <vector>

#include "llavatarappearancedefines.h"
#include "llenvironment.h"
#include "llselectmgr.h"
#include "llviewercamera.h"
#include "llviewercontrol.h"
#include "llviewerobject.h"
#include "llviewershadermgr.h"
#include "llviewertexturelist.h"
#include "llviewerwindow.h"
#include "llvolumemgr.h"
#include "pipeline.h"

LLGLTFMaterialPreviewMgr gGLTFMaterialPreviewMgr;

namespace
{
    constexpr S32 FULLY_LOADED = 0;
    constexpr S32 NOT_LOADED = 99;
};

LLGLTFPreviewTexture::MaterialLoadLevels::MaterialLoadLevels()
{
    for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
    {
        levels[i] = NOT_LOADED;
    }
}

bool LLGLTFPreviewTexture::MaterialLoadLevels::isFullyLoaded()
{
    for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
    {
        if (levels[i] != FULLY_LOADED) { return false; }
    }
    return true;
}

S32& LLGLTFPreviewTexture::MaterialLoadLevels::operator[](size_t i)
{
    llassert(i >= 0 && i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT);
    return levels[i];
}

const S32& LLGLTFPreviewTexture::MaterialLoadLevels::operator[](size_t i) const
{
    llassert(i >= 0 && i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT);
    return levels[i];
}

bool LLGLTFPreviewTexture::MaterialLoadLevels::operator<(const MaterialLoadLevels& other) const
{
    bool less = false;
    for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
    {
        if (((*this)[i] > other[i])) { return false; }
        less = less || ((*this)[i] < other[i]);
    }
    return less;
}

bool LLGLTFPreviewTexture::MaterialLoadLevels::operator>(const MaterialLoadLevels& other) const
{
    bool great = false;
    for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
    {
        if (((*this)[i] < other[i])) { return false; }
        great = great || ((*this)[i] > other[i]);
    }
    return great;
}

namespace
{
    void fetch_texture_for_ui(LLPointer<LLViewerFetchedTexture>& img, const LLUUID& id)
    {
        if (!img && id.notNull())
        {
            if (LLAvatarAppearanceDefines::LLAvatarAppearanceDictionary::isBakedImageId(id))
            {
                LLViewerObject* obj = LLSelectMgr::getInstance()->getSelection()->getFirstObject();
                if (obj)
                {
                    LLViewerTexture* viewerTexture = obj->getBakedTextureForMagicId(id);
                    img = viewerTexture ? dynamic_cast<LLViewerFetchedTexture*>(viewerTexture) : NULL;
                }
            }
            else
            {
                img = LLViewerTextureManager::getFetchedTexture(id, FTT_DEFAULT, true, LLGLTexture::BOOST_NONE, LLViewerTexture::LOD_TEXTURE);
            }
        }
        if (img)
        {
            img->setBoostLevel(LLGLTexture::BOOST_PREVIEW);
            img->forceToSaveRawImage(0);
        }
    };

    // *NOTE: Does not use the same conventions as texture discard level. Lower is better.
    S32 get_texture_load_level(const LLPointer<LLViewerFetchedTexture>& texture)
    {
        if (!texture) { return FULLY_LOADED; }
        const S32 raw_level = texture->getDiscardLevel();
        if (raw_level < 0) { return NOT_LOADED; }
        return raw_level;
    }

    LLGLTFPreviewTexture::MaterialLoadLevels get_material_load_levels(LLFetchedGLTFMaterial& material)
    {
        llassert(!material.isFetching());

        using MaterialTextures = LLPointer<LLViewerFetchedTexture>*[LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT];

        MaterialTextures textures;

        textures[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR] = &material.mBaseColorTexture;
        textures[LLGLTFMaterial::GLTF_TEXTURE_INFO_NORMAL] = &material.mNormalTexture;
        textures[LLGLTFMaterial::GLTF_TEXTURE_INFO_METALLIC_ROUGHNESS] = &material.mMetallicRoughnessTexture;
        textures[LLGLTFMaterial::GLTF_TEXTURE_INFO_EMISSIVE] = &material.mEmissiveTexture;

        LLGLTFPreviewTexture::MaterialLoadLevels levels;

        for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
        {
            fetch_texture_for_ui(*textures[i], material.mTextureId[i]);
            levels[i] = get_texture_load_level(*textures[i]);
        }

        return levels;
    }

    // Is the material loaded enough to start rendering a preview?
    bool is_material_loaded_enough_for_ui(LLFetchedGLTFMaterial& material)
    {
        if (material.isFetching())
        {
            return false;
        }

        LLGLTFPreviewTexture::MaterialLoadLevels levels = get_material_load_levels(material);

        for (U32 i = 0; i < LLGLTFMaterial::GLTF_TEXTURE_INFO_COUNT; ++i)
        {
            if (levels[i] == NOT_LOADED)
            {
                return false;
            }
        }

        return true;
    }

};  // namespace

LLGLTFPreviewTexture::LLGLTFPreviewTexture(LLPointer<LLFetchedGLTFMaterial> material, S32 width)
    : LLViewerDynamicTexture(width, width, 4, EOrder::ORDER_MIDDLE, false)
    , mGLTFMaterial(material)
{
}

// static
LLPointer<LLGLTFPreviewTexture> LLGLTFPreviewTexture::create(LLPointer<LLFetchedGLTFMaterial> material)
{
    return new LLGLTFPreviewTexture(material, LLPipeline::MAX_PREVIEW_WIDTH);
}

bool LLGLTFPreviewTexture::needsRender()
{
    LL_PROFILE_ZONE_SCOPED_CATEGORY_UI;

    if (!mShouldRender && mBestLoad.isFullyLoaded()) { return false; }
    MaterialLoadLevels current_load = get_material_load_levels(*mGLTFMaterial.get());
    if (current_load < mBestLoad)
    {
        mShouldRender = true;
        mBestLoad = current_load;
        return true;
    }
    return false;
}

void LLGLTFPreviewTexture::preRender(bool clear_depth)
{
    LL_PROFILE_ZONE_SCOPED_CATEGORY_UI;

    llassert(mShouldRender);
    if (!mShouldRender) { return; }

    LLViewerDynamicTexture::preRender(clear_depth);
}


namespace {

struct GLTFPreviewModel
{
    GLTFPreviewModel(LLPointer<LLDrawInfo>& info, const LLMatrix4& mat)
    : mDrawInfo(info)
    , mModelMatrix(mat)
    {
        mDrawInfo->mModelMatrix = &mModelMatrix;
    }
    GLTFPreviewModel(GLTFPreviewModel&) = delete;
    ~GLTFPreviewModel()
    {
        // No model matrix necromancy
        llassert(gGLLastMatrix != &mModelMatrix);
        gGLLastMatrix = nullptr;
    }
    LLPointer<LLDrawInfo> mDrawInfo;
    LLMatrix4 mModelMatrix; // Referenced by mDrawInfo
};

using PreviewSpherePart = std::unique_ptr<GLTFPreviewModel>;
using PreviewSphere = std::vector<PreviewSpherePart>;

// Like LLVolumeGeometryManager::registerFace but without batching or too-many-indices/vertices checking.
PreviewSphere create_preview_sphere(LLPointer<LLFetchedGLTFMaterial>& material, const LLMatrix4& model_matrix)
{
    LL_PROFILE_ZONE_SCOPED_CATEGORY_UI;

    const LLColor4U vertex_color(material->mBaseColor);

    LLPrimitive prim;
    prim.init_primitive(LL_PCODE_VOLUME);
    LLVolumeParams params;
    params.setType(LL_PCODE_PROFILE_CIRCLE_HALF, LL_PCODE_PATH_CIRCLE);
    params.setBeginAndEndS(0.f, 1.f);
    params.setBeginAndEndT(0.f, 1.f);
    params.setRatio(1, 1);
    params.setShear(0, 0);
    constexpr auto MAX_LOD = LLVolumeLODGroup::NUM_LODS - 1;
    prim.setVolume(params, MAX_LOD);

    LLVolume* volume = prim.getVolume();
    llassert(volume);
    for (LLVolumeFace& face : volume->getVolumeFaces())
    {
        face.createTangents();
    }

    PreviewSphere preview_sphere;
    preview_sphere.reserve(volume->getNumFaces());

    LLPointer<LLVertexBuffer> buf = new LLVertexBuffer(
        LLVertexBuffer::MAP_VERTEX |
        LLVertexBuffer::MAP_NORMAL |
        LLVertexBuffer::MAP_TEXCOORD0 |
        LLVertexBuffer::MAP_COLOR |
        LLVertexBuffer::MAP_TANGENT
    );
    U32 nv = 0;
    U32 ni = 0;
    for (LLVolumeFace& face : volume->getVolumeFaces())
    {
        nv += face.mNumVertices;
        ni += face.mNumIndices;
    }
    buf->allocateBuffer(nv, ni);

    // UV hacks
    // Higher factor helps to see more details on the preview sphere
    const LLVector2 uv_factor(2.0f, 2.0f);
    // Offset places center of material in center of view
    const LLVector2 uv_offset(-0.5f, -0.5f);

    LLStrider<U16> indices;
    LLStrider<LLVector4a> positions;
    LLStrider<LLVector4a> normals;
    LLStrider<LLVector2> texcoords;
    LLStrider<LLColor4U> colors;
    LLStrider<LLVector4a> tangents;
    buf->getIndexStrider(indices);
    buf->getVertexStrider(positions);
    buf->getNormalStrider(normals);
    buf->getTexCoord0Strider(texcoords);
    buf->getColorStrider(colors);
    buf->getTangentStrider(tangents);
    U32 index_offset = 0;
    U32 vertex_offset = 0;
    for (const LLVolumeFace& face : volume->getVolumeFaces())
    {
        for (S32 i = 0; i < face.mNumIndices; ++i)
        {
            *indices++ = face.mIndices[i] + vertex_offset;
        }
        for (S32 v = 0; v < face.mNumVertices; ++v)
        {
            *positions++ = face.mPositions[v];
            *normals++ = face.mNormals[v];
            LLVector2 uv(face.mTexCoords[v]);
            uv.scaleVec(uv_factor);
            uv += uv_offset;
            *texcoords++ = uv;
            *colors++ = vertex_color;
            *tangents++ = face.mTangents[v];
        }

        constexpr LLViewerTexture* no_media = nullptr;
        LLPointer<LLDrawInfo> info = new LLDrawInfo(U16(vertex_offset), U16(vertex_offset + face.mNumVertices - 1), face.mNumIndices, index_offset, no_media, buf.get());
        info->mGLTFMaterial = material;
        preview_sphere.emplace_back(std::make_unique<GLTFPreviewModel>(info, model_matrix));
        index_offset += face.mNumIndices;
        vertex_offset += face.mNumVertices;
    }

    buf->unmapBuffer();

    return preview_sphere;
}

void set_preview_sphere_material(PreviewSphere& preview_sphere, LLPointer<LLFetchedGLTFMaterial>& material)
{
    llassert(!preview_sphere.empty());
    if (preview_sphere.empty()) { return; }

    const LLColor4U vertex_color(material->mBaseColor);

    // See comments about unmapBuffer in llvertexbuffer.h
    for (PreviewSpherePart& part : preview_sphere)
    {
        LLDrawInfo* info = part->mDrawInfo.get();
        info->mGLTFMaterial = material;
        LLVertexBuffer* buf = info->mVertexBuffer.get();
        LLStrider<LLColor4U> colors;
        const S32 count = info->mEnd - info->mStart + 1;
        buf->getColorStrider(colors, info->mStart, count);
        for (S32 i = 0; i < count; ++i)
        {
            *colors++ = vertex_color;
        }
        buf->unmapBuffer();
    }
}

PreviewSphere& get_preview_sphere(LLPointer<LLFetchedGLTFMaterial>& material, const LLMatrix4& model_matrix)
{
    static PreviewSphere preview_sphere;
    if (preview_sphere.empty())
    {
        preview_sphere = create_preview_sphere(material, model_matrix);
    }
    else
    {
        set_preview_sphere_material(preview_sphere, material);
    }
    return preview_sphere;
}

// Final, direct modifications to shader constants, just before render
void fixup_shader_constants(LLGLSLShader& shader)
{
    // Sunlight intensity of 0 no matter what
    shader.uniform1i(LLShaderMgr::SUN_UP_FACTOR, 1);
    shader.uniform3fv(LLShaderMgr::SUNLIGHT_COLOR, 1, LLColor3::white.mV);
    shader.uniform1f(LLShaderMgr::DENSITY_MULTIPLIER, 0.0f);

    // Ignore sun shadow (if enabled)
    for (U32 i = 0; i < 6; i++)
    {
        const S32 channel = shader.getTextureChannel(LLShaderMgr::DEFERRED_SHADOW0+i);
        if (channel != -1)
        {
            gGL.getTexUnit(channel)->bind(LLViewerFetchedTexture::sWhiteImagep, true);
        }
    }
}

// Set a variable to a value temporarily, and restor the variable's old value
// when this object leaves scope.
template<typename T>
struct SetTemporarily
{
    T* mRef;
    T mOldVal;
    SetTemporarily(T* var, T temp_val)
    {
        mRef = var;
        mOldVal = *mRef;
        *mRef = temp_val;
    }
    ~SetTemporarily()
    {
        *mRef = mOldVal;
    }
};

}; // namespace

bool LLGLTFPreviewTexture::render()
{
    LL_PROFILE_ZONE_SCOPED_CATEGORY_UI;

    if (!mShouldRender) { return false; }

    glClearColor(0, 0, 0, 0);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    LLGLDepthTest(GL_FALSE);
    LLGLDisable stencil(GL_STENCIL_TEST);
    LLGLDisable scissor(GL_SCISSOR_TEST);
    SetTemporarily<bool> no_dof(&LLPipeline::RenderDepthOfField, false);
    SetTemporarily<bool> no_glow(&LLPipeline::sRenderGlow, false);
    SetTemporarily<bool> no_ssr(&LLPipeline::RenderScreenSpaceReflections, false);
    SetTemporarily<U32> no_aa(&LLPipeline::RenderFSAAType, U32(0));
    SetTemporarily<LLPipeline::RenderTargetPack*> use_auxiliary_render_target(&gPipeline.mRT, &gPipeline.mAuxillaryRT);

    LLVector3 light_dir3(1.0f, 1.0f, 1.0f);
    light_dir3.normalize();
    const LLVector4 light_dir = LLVector4(light_dir3, 0);
    const S32 old_local_light_count = gSavedSettings.get<S32>("RenderLocalLightCount");
    gSavedSettings.set<S32>("RenderLocalLightCount", 0);

    gPipeline.mReflectionMapManager.forceDefaultProbeAndUpdateUniforms();

    LLViewerCamera camera;

    // Calculate the object distance at which the object of a given radius will
    // span the partial width of the screen given by fill_ratio.
    // Assume the primitive has a scale of 1 (this is the default).
    constexpr F32 fill_ratio = 0.8f;
    constexpr F32 object_radius = 0.5f;
    const F32 object_distance = (object_radius / fill_ratio) * tan(camera.getDefaultFOV());
    // Negative coordinate shows the textures on the sphere right-side up, when
    // combined with the UV hacks in create_preview_sphere
    const LLVector3 object_position(0.0, -object_distance, 0.0);
    LLMatrix4 object_transform;
    object_transform.translate(object_position);

    // Set up camera and viewport
    const LLVector3 origin(0.0, 0.0, 0.0);
    camera.lookAt(origin, object_position);
    camera.setAspect((F32)(mFullHeight / mFullWidth));
    const LLRect texture_rect(0, mFullHeight, mFullWidth, 0);
    camera.setPerspective(NOT_FOR_SELECTION, texture_rect.mLeft, texture_rect.mBottom, texture_rect.getWidth(), texture_rect.getHeight(), false, camera.getNear(), MAX_FAR_CLIP*2.f);

    // Generate sphere object on-the-fly. Discard afterwards. (Vertex buffer is
    // discarded, but the sphere should be cached in LLVolumeMgr.)
    PreviewSphere& preview_sphere = get_preview_sphere(mGLTFMaterial, object_transform);

    gPipeline.setupHWLights();
    glm::mat4 mat = get_current_modelview();
    glm::vec4 transformed_light_dir = glm::make_vec4(light_dir.mV);
    transformed_light_dir = mat * transformed_light_dir;
    SetTemporarily<LLVector4> force_sun_direction_high_graphics(&gPipeline.mTransformedSunDir, LLVector4(glm::value_ptr(transformed_light_dir)));
    // Override lights to ensure the sun is always shining from a certain direction (low graphics)
    // See also force_sun_direction_high_graphics and fixup_shader_constants
    {
        LLLightState* light = gGL.getLight(0);
        light->setPosition(light_dir);
        constexpr bool sun_up = true;
        light->setSunPrimary(sun_up);
    }

    LLRenderTarget& screen = gPipeline.mAuxillaryRT.screen;

    // *HACK: Force reset of the model matrix
    gGLLastMatrix = nullptr;

#if 0
    if (mGLTFMaterial->mAlphaMode == LLGLTFMaterial::ALPHA_MODE_OPAQUE || mGLTFMaterial->mAlphaMode == LLGLTFMaterial::ALPHA_MODE_MASK)
    {
        // *TODO: Opaque/alpha mask rendering
    }
    else
#endif
    {
        // Alpha blend rendering

        screen.bindTarget();
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        LLGLSLShader& shader = gDeferredPBRAlphaProgram;

        gPipeline.bindDeferredShader(shader);
        fixup_shader_constants(shader);

        for (PreviewSpherePart& part : preview_sphere)
        {
            LLRenderPass::pushGLTFBatch(*part->mDrawInfo);
        }

        gPipeline.unbindDeferredShader(shader);

        screen.flush();
    }

    // *HACK: Hide mExposureMap from generateExposure
    gPipeline.mExposureMap.swapFBORefs(gPipeline.mLastExposure);

    gPipeline.copyScreenSpaceReflections(&screen, &gPipeline.mSceneMap);
    gPipeline.generateLuminance(&screen, &gPipeline.mLuminanceMap);
    gPipeline.generateExposure(&gPipeline.mLuminanceMap, &gPipeline.mExposureMap, /*use_history = */ false);

    LLRenderTarget* src = &gPipeline.mPostPingMap;
    LLRenderTarget* dst = &gPipeline.mPostPongMap;
    gPipeline.tonemap(&screen, dst);
    std::swap(src, dst);

    LLVertexBuffer::unbind();
    gPipeline.generateGlow(src);
    gPipeline.combineGlow(src, dst);
    std::swap(src, dst);

    // *HACK: Restore mExposureMap (it will be consumed by generateExposure next frame)
    gPipeline.mExposureMap.swapFBORefs(gPipeline.mLastExposure);

    // Final render

    gDeferredPostNoDoFProgram.bind();

    // From LLPipeline::renderFinalize: "Whatever is last in the above post processing chain should _always_ be rendered directly here.  If not, expect problems."
    gDeferredPostNoDoFProgram.bindTexture(LLShaderMgr::DEFERRED_DIFFUSE, src);
    gDeferredPostNoDoFProgram.bindTexture(LLShaderMgr::DEFERRED_DEPTH, mBoundTarget, true);

    gDeferredPostNoDoFProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, (GLfloat)src->getWidth(), (GLfloat)src->getHeight());

    {
        LLGLDepthTest depth_test(GL_TRUE, GL_TRUE, GL_ALWAYS);
        gPipeline.mScreenTriangleVB->setBuffer();
        gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
    }

    gDeferredPostNoDoFProgram.unbind();

    // Clean up
    gPipeline.setupHWLights();
    gPipeline.mReflectionMapManager.forceDefaultProbeAndUpdateUniforms(false);
    gSavedSettings.set<S32>("RenderLocalLightCount", old_local_light_count);

    return true;
}

void LLGLTFPreviewTexture::postRender(bool success)
{
    LL_PROFILE_ZONE_SCOPED_CATEGORY_UI;

    if (!mShouldRender) { return; }
    mShouldRender = false;

    LLViewerDynamicTexture::postRender(success);
}

LLPointer<LLViewerTexture> LLGLTFMaterialPreviewMgr::getPreview(LLPointer<LLFetchedGLTFMaterial> &material)
{
    if (!material)
    {
        return nullptr;
    }

    static LLCachedControl<bool> sUIPreviewMaterial(gSavedSettings, "UIPreviewMaterial", false);
    if (!sUIPreviewMaterial)
    {
        fetch_texture_for_ui(material->mBaseColorTexture, material->mTextureId[LLGLTFMaterial::GLTF_TEXTURE_INFO_BASE_COLOR]);
        return material->mBaseColorTexture;
    }

    if (!is_material_loaded_enough_for_ui(*material))
    {
        return nullptr;
    }

    return LLGLTFPreviewTexture::create(material);
}