1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/**
* @file llflycam.cpp
* @brief LLFlycam class implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llflycam.h"
#include <algorithm>
#include "llcamera.h"
#include "llcoordframe.h"
LLFlycam::LLFlycam()
{
}
void LLFlycam::setTransform(const LLVector3& position, const LLQuaternion& rotation)
{
mPosition = position;
mRotation = rotation;
mRotation.normalize();
}
void LLFlycam::getTransform(LLVector3& position_out, LLQuaternion& rotation_out)
{
position_out = mPosition;
rotation_out = mRotation;
}
// 'view' is expected to be in radians
void LLFlycam::setView(F32 view)
{
mView = std::clamp(view, MIN_FIELD_OF_VIEW, MAX_FIELD_OF_VIEW);
}
void LLFlycam::setLinearVelocity(const LLVector3& velocity)
{
// Note: this math expects velocity components to be in range [-1.0, 1.0]
mLinearVelocity = velocity;
}
void LLFlycam::setPitchRate(F32 pitch_rate)
{
// Note: this math expects pitch_rate to be in range [-1.0, 1.0]
constexpr F32 PITCH_RATE_FACTOR = 0.75f;
mPitchRate = pitch_rate * PITCH_RATE_FACTOR;
}
void LLFlycam::setYawRate(F32 yaw_rate)
{
// Note: this math expects yaw_rate to be in range [-1.0, 1.0]
constexpr F32 YAW_RATE_FACTOR = 0.90f;
mYawRate = yaw_rate * YAW_RATE_FACTOR;
}
void LLFlycam::setZoomRate(F32 zoom_rate)
{
// Note: this math expects zoom_rate to be in range [-1.0, 1.0]
constexpr F32 FULL_ZOOM_PERIOD = 5.0f; // seconds
constexpr F32 ZOOM_RATE_FACTOR = (MAX_FIELD_OF_VIEW - MIN_FIELD_OF_VIEW) / FULL_ZOOM_PERIOD;
mZoomRate = zoom_rate * ZOOM_RATE_FACTOR;
}
void LLFlycam::integrate(F32 delta_time)
{
// cap delta_time to slow camera motion when framerates are low
constexpr F32 MAX_DELTA_TIME = 0.2f;
if (delta_time > MAX_DELTA_TIME)
{
delta_time = MAX_DELTA_TIME;
}
// Note: we modulate pitch and yaw rates by view ratio
// to make pitch and yaw work better when zoomed in close
F32 angle = delta_time * mPitchRate * (mView / DEFAULT_FIELD_OF_VIEW);
bool needs_renormalization = false;
if (fabsf(angle) > 0.0f)
{
LLQuaternion dQ;
dQ.setAngleAxis(angle, 0.0f, 1.0f, 0.0f);
mRotation = dQ * mRotation;
needs_renormalization = true;
}
angle = delta_time * mYawRate * (mView / DEFAULT_FIELD_OF_VIEW);
if (fabsf(angle) > 0.0f)
{
LLQuaternion dQ;
dQ.setAngleAxis(angle, 0.0f, 0.0f, 1.0f);
mRotation = mRotation * dQ;
needs_renormalization = true;
}
if (mLinearVelocity.lengthSquared() > 0.0f)
{
mPosition += (delta_time * mLinearVelocity) * mRotation;
}
if (mZoomRate != 0.0f)
{
// Note: we subtract the delta because "positive" zoom (e.g. "zoom in")
// produces smaller view angle
mView = std::clamp(mView - delta_time * mZoomRate, MIN_FIELD_OF_VIEW, MAX_FIELD_OF_VIEW);
}
if (needs_renormalization)
{
mRotation.normalize();
}
}
|