summaryrefslogtreecommitdiff
path: root/indra/newview/llflexibleobject.cpp
blob: 7ed62d68bd452b1454e03792bccf7da1e83c26f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/**
 * @file llflexibleobject.cpp
 * @brief Flexible object implementation
 *
 * $LicenseInfo:firstyear=2006&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "llviewerprecompiledheaders.h"

#include "pipeline.h"
#include "lldrawpoolbump.h"
#include "llface.h"
#include "llflexibleobject.h"
#include "llglheaders.h"
#include "llrendersphere.h"
#include "llviewerobject.h"
#include "llagent.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewertexturelist.h"
#include "llviewercontrol.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llworld.h"
#include "llvoavatar.h"

static const F32 SEC_PER_FLEXI_FRAME = 1.f / 60.f; // 60 flexi updates per second
/*static*/ F32 LLVolumeImplFlexible::sUpdateFactor = 1.0f;
std::vector<LLVolumeImplFlexible*> LLVolumeImplFlexible::sInstanceList;

// LLFlexibleObjectData::pack/unpack now in llprimitive.cpp

//-----------------------------------------------
// constructor
//-----------------------------------------------
LLVolumeImplFlexible::LLVolumeImplFlexible(LLViewerObject* vo, LLFlexibleObjectData* attributes) :
        mVO(vo),
        mAttributes(attributes),
        mLastFrameNum(0),
        mLastUpdatePeriod(0)
{
    static U32 seed = 0;
    mID = seed++;
    mInitialized = FALSE;
    mUpdated = FALSE;
    mInitializedRes = -1;
    mSimulateRes = 0;
    mCollisionSphereRadius = 0.f;
    mRenderRes = -1;

    if(mVO->mDrawable.notNull())
    {
        mVO->mDrawable->makeActive() ;
    }

    mInstanceIndex = sInstanceList.size();
    sInstanceList.push_back(this);
}//-----------------------------------------------

LLVolumeImplFlexible::~LLVolumeImplFlexible()
{
    S32 end_idx = sInstanceList.size()-1;

    if (end_idx != mInstanceIndex)
    {
        sInstanceList[mInstanceIndex] = sInstanceList[end_idx];
        sInstanceList[mInstanceIndex]->mInstanceIndex = mInstanceIndex;
    }

    sInstanceList.pop_back();
}

//static
void LLVolumeImplFlexible::updateClass()
{
    LL_PROFILE_ZONE_SCOPED;

    U64 virtual_frame_num = LLTimer::getElapsedSeconds() / SEC_PER_FLEXI_FRAME;
    for (std::vector<LLVolumeImplFlexible*>::iterator iter = sInstanceList.begin();
            iter != sInstanceList.end();
            ++iter)
    {
        // Note: by now update period might have changed
        if ((*iter)->mRenderRes == -1
            || (*iter)->mLastFrameNum + (*iter)->mLastUpdatePeriod <= virtual_frame_num
            || (*iter)->mLastFrameNum > virtual_frame_num) //time issues, overflow
        {
            (*iter)->doIdleUpdate();
        }
    }
}

LLVector3 LLVolumeImplFlexible::getFramePosition() const
{
    return mVO->getRenderPosition();
}

LLQuaternion LLVolumeImplFlexible::getFrameRotation() const
{
    return mVO->getRenderRotation();
}

void LLVolumeImplFlexible::onParameterChanged(U16 param_type, LLNetworkData *data, BOOL in_use, bool local_origin)
{
    if (param_type == LLNetworkData::PARAMS_FLEXIBLE)
    {
        mAttributes = (LLFlexibleObjectData*)data;
        setAttributesOfAllSections();
    }
}

void LLVolumeImplFlexible::onShift(const LLVector4a &shift_vector)
{
    //VECTORIZE THIS
    LLVector3 shift(shift_vector.getF32ptr());
    for (int section = 0; section < (1<<FLEXIBLE_OBJECT_MAX_SECTIONS)+1; ++section)
    {
        mSection[section].mPosition += shift;
    }
}

//-----------------------------------------------------------------------------------------------
void LLVolumeImplFlexible::setParentPositionAndRotationDirectly( LLVector3 p, LLQuaternion r )
{
    mParentPosition = p;
    mParentRotation = r;

}//-----------------------------------------------------------------------------------------------------

void LLVolumeImplFlexible::remapSections(LLFlexibleObjectSection *source, S32 source_sections,
                                         LLFlexibleObjectSection *dest, S32 dest_sections)
{
    S32 num_output_sections = 1<<dest_sections;
    LLVector3 scale = mVO->mDrawable->getScale();
    F32 source_section_length = scale.mV[VZ] / (F32)(1<<source_sections);
    F32 section_length = scale.mV[VZ] / (F32)num_output_sections;
    if (source_sections == -1)
    {
        // Generate all from section 0
        dest[0] = source[0];
        for (S32 section=0; section<num_output_sections; ++section)
        {
            dest[section+1] = dest[section];
            dest[section+1].mPosition += dest[section].mDirection * section_length;
            dest[section+1].mVelocity.setVec( LLVector3::zero );
        }
    }
    else if (source_sections > dest_sections)
    {
        // Copy, skipping sections

        S32 num_steps = 1<<(source_sections-dest_sections);

        // Copy from left to right since it may be an in-place computation
        for (S32 section=0; section<num_output_sections; ++section)
        {
            dest[section+1] = source[(section+1)*num_steps];
        }
        dest[0] = source[0];
    }
    else if (source_sections < dest_sections)
    {
        // Interpolate section info
        // Iterate from right to left since it may be an in-place computation
        S32 step_shift = dest_sections-source_sections;
        S32 num_steps = 1<<step_shift;
        for (S32 section=num_output_sections-num_steps; section>=0; section -= num_steps)
        {
            LLFlexibleObjectSection *last_source_section = &source[section>>step_shift];
            LLFlexibleObjectSection *source_section = &source[(section>>step_shift)+1];

            // Cubic interpolation of position
            // At^3 + Bt^2 + Ct + D = f(t)
            LLVector3 D = last_source_section->mPosition;
            LLVector3 C = last_source_section->mdPosition * source_section_length;
            LLVector3 Y = source_section->mdPosition * source_section_length - C; // Helper var
            LLVector3 X = (source_section->mPosition - D - C); // Helper var
            LLVector3 A = Y - 2*X;
            LLVector3 B = X - A;

            F32 t_inc = 1.f/F32(num_steps);
            F32 t = t_inc;
            for (S32 step=1; step<num_steps; ++step)
            {
                dest[section+step].mScale =
                    lerp(last_source_section->mScale, source_section->mScale, t);
                dest[section+step].mAxisRotation =
                    slerp(t, last_source_section->mAxisRotation, source_section->mAxisRotation);

                // Evaluate output interpolated values
                F32 t_sq = t*t;
                dest[section+step].mPosition = t_sq*(t*A + B) + t*C + D;
                dest[section+step].mRotation =
                    slerp(t, last_source_section->mRotation, source_section->mRotation);
                dest[section+step].mVelocity = lerp(last_source_section->mVelocity, source_section->mVelocity, t);
                dest[section+step].mDirection = lerp(last_source_section->mDirection, source_section->mDirection, t);
                dest[section+step].mdPosition = lerp(last_source_section->mdPosition, source_section->mdPosition, t);
                dest[section+num_steps] = *source_section;
                t += t_inc;
            }
        }
        dest[0] = source[0];
    }
    else
    {
        // numbers are equal. copy info
        for (S32 section=0; section <= num_output_sections; ++section)
        {
            dest[section] = source[section];
        }
    }
}

//-----------------------------------------------------------------------------
void LLVolumeImplFlexible::setAttributesOfAllSections(LLVector3* inScale)
{
    LLVector2 bottom_scale, top_scale;
    F32 begin_rot = 0, end_rot = 0;
    if (mVO->getVolume())
    {
        const LLPathParams &params = mVO->getVolume()->getParams().getPathParams();
        bottom_scale = params.getBeginScale();
        top_scale = params.getEndScale();
        begin_rot = F_PI * params.getTwistBegin();
        end_rot = F_PI * params.getTwist();
    }

    if (!mVO->mDrawable)
    {
        return;
    }

    S32 num_sections = 1 << mSimulateRes;

    LLVector3 scale;
    if (inScale == (LLVector3*)NULL)
    {
        scale = mVO->mDrawable->getScale();
    }
    else
    {
        scale = *inScale;
    }

    mSection[0].mPosition = getAnchorPosition();
    mSection[0].mDirection = LLVector3::z_axis * getFrameRotation();
    mSection[0].mdPosition = mSection[0].mDirection;
    mSection[0].mScale.setVec(scale.mV[VX]*bottom_scale.mV[0], scale.mV[VY]*bottom_scale.mV[1]);
    mSection[0].mVelocity.setVec(0,0,0);
    mSection[0].mAxisRotation.setQuat(begin_rot,0,0,1);

    remapSections(mSection, mInitializedRes, mSection, mSimulateRes);
    mInitializedRes = mSimulateRes;

    F32 t_inc = 1.f/F32(num_sections);
    F32 t = t_inc;

    for ( int i=1; i<= num_sections; i++)
    {
        mSection[i].mAxisRotation.setQuat(lerp(begin_rot,end_rot,t),0,0,1);
        mSection[i].mScale = LLVector2(
            scale.mV[VX] * lerp(bottom_scale.mV[0], top_scale.mV[0], t),
            scale.mV[VY] * lerp(bottom_scale.mV[1], top_scale.mV[1], t));
        t += t_inc;
    }
}//-----------------------------------------------------------------------------------


void LLVolumeImplFlexible::onSetVolume(const LLVolumeParams &volume_params, const S32 detail)
{
}


void LLVolumeImplFlexible::updateRenderRes()
{
    if (!mAttributes)
        return;

    LLDrawable* drawablep = mVO->mDrawable;

    S32 new_res = mAttributes->getSimulateLOD();

#if 1 //optimal approximation of previous behavior that doesn't rely on atan2
    F32 app_angle = mVO->getScale().mV[2]/drawablep->mDistanceWRTCamera;

    // Rendering sections increases with visible angle on the screen
    mRenderRes = (S32) (12.f*app_angle);
#else //legacy behavior
    //number of segments only cares about z axis
    F32 app_angle = ll_round((F32) atan2( mVO->getScale().mV[2]*2.f, drawablep->mDistanceWRTCamera) * RAD_TO_DEG, 0.01f);

    // Rendering sections increases with visible angle on the screen
    mRenderRes = (S32)(FLEXIBLE_OBJECT_MAX_SECTIONS*4*app_angle*DEG_TO_RAD/LLViewerCamera::getInstance()->getView());
#endif

    mRenderRes = llclamp(mRenderRes, new_res-1, (S32) FLEXIBLE_OBJECT_MAX_SECTIONS);

    // Throttle back simulation of segments we're not rendering
    if (mRenderRes < new_res)
    {
        new_res = mRenderRes;
    }

    if (!mInitialized || (mSimulateRes != new_res))
    {
        mSimulateRes = new_res;
        setAttributesOfAllSections();
        mInitialized = TRUE;
    }
}
//---------------------------------------------------------------------------------
// This calculates the physics of the flexible object. Note that it has to be 0
// updated every time step. In the future, perhaps there could be an
// optimization similar to what Havok does for objects that are stationary.
//---------------------------------------------------------------------------------
void LLVolumeImplFlexible::doIdleUpdate()
{
    LLDrawable* drawablep = mVO->mDrawable;

    if (drawablep)
    {
        //ensure drawable is active
        drawablep->makeActive();

        if (gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FLEXIBLE))
        {
            bool visible = drawablep->isVisible();

            if (mRenderRes == -1)
            {
                updateRenderRes();
                gPipeline.markRebuild(drawablep, LLDrawable::REBUILD_POSITION);
            }
            else
            {
                F32 pixel_area = mVO->getPixelArea();

                // Note: Flexies afar will be rarely updated, closer ones will be updated more frequently.
                // But frequency differences are extremely noticeable, so consider modifying update factor,
                // or at least clamping value a bit more from both sides.
                U32 update_period = (U32) (llmax((S32) (LLViewerCamera::getInstance()->getScreenPixelArea()*0.01f/(pixel_area*(sUpdateFactor+1.f))),0)+1);
                // MAINT-1890 Clamp the update period to ensure that the update_period is no greater than 32 frames
                update_period = llclamp(update_period, 1U, 32U);

                // We control how fast flexies update, buy splitting updates among frames
                U64 virtual_frame_num = LLTimer::getElapsedSeconds() / SEC_PER_FLEXI_FRAME;

                if  (visible)
                {
                    if (!drawablep->isState(LLDrawable::IN_REBUILD_Q) &&
                        pixel_area > 256.f)
                    {
                        U32 id;
                        if (mVO->isRootEdit())
                        {
                            id = mID;
                        }
                        else
                        {
                            LLVOVolume* parent = (LLVOVolume*)mVO->getParent();
                            id = parent->getVolumeInterfaceID();
                        }


                        // Throttle flexies and spread load by preventing flexies from updating in same frame
                        // Shows how many frames we need to wait before next update
                        U64 throttling_delay = (virtual_frame_num + id) % update_period;

                        if ((throttling_delay == 0 && mLastFrameNum < virtual_frame_num) //one or more virtual frames per frame
                            || (mLastFrameNum + update_period < virtual_frame_num) // missed virtual frame
                            || mLastFrameNum > virtual_frame_num) // overflow
                        {
                            // We need mLastFrameNum to compensate for 'unreliable time' and to filter 'duplicate' frames
                            // If happened too late, subtract throttling_delay (it is zero otherwise)
                            mLastFrameNum = virtual_frame_num - throttling_delay;

                            // Store update period for updateClass()
                            // Note: Consider substituting update_period with mLastUpdatePeriod everywhere.
                            mLastUpdatePeriod = update_period;

                            updateRenderRes();

                            mVO->shrinkWrap();
                            gPipeline.markRebuild(drawablep, LLDrawable::REBUILD_POSITION);
                        }
                    }
                }
                else
                {
                    mLastFrameNum = virtual_frame_num;
                    mLastUpdatePeriod = update_period;
                }
            }

        }
    }
}

inline S32 log2(S32 x)
{
    S32 ret = 0;
    while (x > 1)
    {
        ++ret;
        x >>= 1;
    }
    return ret;
}

void LLVolumeImplFlexible::doFlexibleUpdate()
{
    LL_PROFILE_ZONE_SCOPED;
    LLVolume* volume = mVO->getVolume();
    LLPath *path = &volume->getPath();
    if ((mSimulateRes == 0 || !mInitialized) && mVO->mDrawable->isVisible())
    {
        BOOL force_update = mSimulateRes == 0 ? TRUE : FALSE;
        doIdleUpdate();

        if (!force_update || !gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FLEXIBLE))
        {
            return; // we did not get updated or initialized, proceeding without can be dangerous
        }
    }

    if(!mInitialized || !mAttributes)
    {
        //the object is not visible
        return ;
    }

    // Fix for MAINT-1894
    // Skipping the flexible update if render res is negative.  If we were to continue with a negative value,
    // the subsequent S32 num_render_sections = 1<<mRenderRes; code will specify a really large number of
    // render sections which will then create a length exception in the std::vector::resize() method.
    if (mRenderRes < 0)
    {
        return;
    }

    S32 num_sections = 1 << mSimulateRes;

    F32 secondsThisFrame = mTimer.getElapsedTimeAndResetF32();
    if (secondsThisFrame > 0.2f)
    {
        secondsThisFrame = 0.2f;
    }

    LLVector3 BasePosition = getFramePosition();
    LLQuaternion BaseRotation = getFrameRotation();
    LLQuaternion parentSegmentRotation = BaseRotation;
    LLVector3 anchorDirectionRotated = LLVector3::z_axis * parentSegmentRotation;
    LLVector3 anchorScale = mVO->mDrawable->getScale();

    F32 section_length = anchorScale.mV[VZ] / (F32)num_sections;
    F32 inv_section_length = 1.f / section_length;

    S32 i;

    // ANCHOR position is offset from BASE position (centroid) by half the length
    LLVector3 AnchorPosition = BasePosition - (anchorScale.mV[VZ]/2 * anchorDirectionRotated);

    mSection[0].mPosition = AnchorPosition;
    mSection[0].mDirection = anchorDirectionRotated;
    mSection[0].mRotation = BaseRotation;

    LLQuaternion deltaRotation;

    LLVector3 lastPosition;

    // Coefficients which are constant across sections
    F32 t_factor = mAttributes->getTension() * 0.1f;
    t_factor = t_factor*(1 - pow(0.85f, secondsThisFrame*30));
    if ( t_factor > FLEXIBLE_OBJECT_MAX_INTERNAL_TENSION_FORCE )
    {
        t_factor = FLEXIBLE_OBJECT_MAX_INTERNAL_TENSION_FORCE;
    }

    F32 friction_coeff = (mAttributes->getAirFriction()*2+1);
    friction_coeff = pow(10.f, friction_coeff*secondsThisFrame);
    friction_coeff = (friction_coeff > 1) ? friction_coeff : 1;
    F32 momentum = 1.0f / friction_coeff;

    F32 wind_factor = (mAttributes->getWindSensitivity()*0.1f) * section_length * secondsThisFrame;
    F32 max_angle = atan(section_length*2.f);

    F32 force_factor = section_length * secondsThisFrame;

    // Update simulated sections
    for (i=1; i<=num_sections; ++i)
    {
        LLVector3 parentSectionVector;
        LLVector3 parentSectionPosition;
        LLVector3 parentDirection;

        //---------------------------------------------------
        // save value of position as lastPosition
        //---------------------------------------------------
        lastPosition = mSection[i].mPosition;

        //------------------------------------------------------------------------------------------
        // gravity
        //------------------------------------------------------------------------------------------
        mSection[i].mPosition.mV[2] -= mAttributes->getGravity() * force_factor;

        //------------------------------------------------------------------------------------------
        // wind force
        //------------------------------------------------------------------------------------------
        if (mAttributes->getWindSensitivity() > 0.001f)
        {
            mSection[i].mPosition += gAgent.getRegion()->mWind.getVelocity( mSection[i].mPosition ) * wind_factor;
        }

        //------------------------------------------------------------------------------------------
        // user-defined force
        //------------------------------------------------------------------------------------------
        mSection[i].mPosition += mAttributes->getUserForce() * force_factor;

        //---------------------------------------------------
        // tension (rigidity, stiffness)
        //---------------------------------------------------
        parentSectionPosition = mSection[i-1].mPosition;
        parentDirection = mSection[i-1].mDirection;

        if ( i == 1 )
        {
            parentSectionVector = mSection[0].mDirection;
        }
        else
        {
            parentSectionVector = mSection[i-2].mDirection;
        }

        LLVector3 currentVector = mSection[i].mPosition - parentSectionPosition;

        LLVector3 difference = (parentSectionVector*section_length) - currentVector;
        LLVector3 tensionForce = difference * t_factor;

        mSection[i].mPosition += tensionForce;

        //------------------------------------------------------------------------------------------
        // sphere collision, currently not used
        //------------------------------------------------------------------------------------------
        /*if ( mAttributes->mUsingCollisionSphere )
        {
            LLVector3 vectorToCenterOfCollisionSphere = mCollisionSpherePosition - mSection[i].mPosition;
            if ( vectorToCenterOfCollisionSphere.magVecSquared() < mCollisionSphereRadius * mCollisionSphereRadius )
            {
                F32 distanceToCenterOfCollisionSphere = vectorToCenterOfCollisionSphere.magVec();
                F32 penetration = mCollisionSphereRadius - distanceToCenterOfCollisionSphere;

                LLVector3 normalToCenterOfCollisionSphere;

                if ( distanceToCenterOfCollisionSphere > 0.0f )
                {
                    normalToCenterOfCollisionSphere = vectorToCenterOfCollisionSphere / distanceToCenterOfCollisionSphere;
                }
                else // rare
                {
                    normalToCenterOfCollisionSphere = LLVector3::x_axis; // arbitrary
                }

                // push the position out to the surface of the collision sphere
                mSection[i].mPosition -= normalToCenterOfCollisionSphere * penetration;
            }
        }*/

        //------------------------------------------------------------------------------------------
        // inertia
        //------------------------------------------------------------------------------------------
        mSection[i].mPosition += mSection[i].mVelocity * momentum;

        //------------------------------------------------------------------------------------------
        // clamp length & rotation
        //------------------------------------------------------------------------------------------
        mSection[i].mDirection = mSection[i].mPosition - parentSectionPosition;
        mSection[i].mDirection.normVec();
        deltaRotation.shortestArc( parentDirection, mSection[i].mDirection );

        F32 angle;
        LLVector3 axis;
        deltaRotation.getAngleAxis(&angle, axis);
        if (angle > F_PI) angle -= 2.f*F_PI;
        if (angle < -F_PI) angle += 2.f*F_PI;
        if (angle > max_angle)
        {
            //angle = 0.5f*(angle+max_angle);
            deltaRotation.setQuat(max_angle, axis);
        } else if (angle < -max_angle)
        {
            //angle = 0.5f*(angle-max_angle);
            deltaRotation.setQuat(-max_angle, axis);
        }
        LLQuaternion segment_rotation = parentSegmentRotation * deltaRotation;
        parentSegmentRotation = segment_rotation;

        mSection[i].mDirection = (parentDirection * deltaRotation);
        mSection[i].mPosition = parentSectionPosition + mSection[i].mDirection * section_length;
        mSection[i].mRotation = segment_rotation;

        if (i > 1)
        {
            // Propogate half the rotation up to the parent
            LLQuaternion halfDeltaRotation(angle/2, axis);
            mSection[i-1].mRotation = mSection[i-1].mRotation * halfDeltaRotation;
        }

        //------------------------------------------------------------------------------------------
        // calculate velocity
        //------------------------------------------------------------------------------------------
        mSection[i].mVelocity = mSection[i].mPosition - lastPosition;
        if (mSection[i].mVelocity.magVecSquared() > 1.f)
        {
            mSection[i].mVelocity.normVec();
        }
    }

    // Calculate derivatives (not necessary until normals are automagically generated)
    mSection[0].mdPosition = (mSection[1].mPosition - mSection[0].mPosition) * inv_section_length;
    // i = 1..NumSections-1
    for (i=1; i<num_sections; ++i)
    {
        // Quadratic numerical derivative of position

        // f(-L1) = aL1^2 - bL1 + c = f1
        // f(0)   =               c = f2
        // f(L2)  = aL2^2 + bL2 + c = f3
        // f = ax^2 + bx + c
        // d/dx f = 2ax + b
        // d/dx f(0) = b

        // c = f2
        // a = [(f1-c)/L1 + (f3-c)/L2] / (L1+L2)
        // b = (f3-c-aL2^2)/L2

        LLVector3 a = (mSection[i-1].mPosition-mSection[i].mPosition +
                    mSection[i+1].mPosition-mSection[i].mPosition) * 0.5f * inv_section_length * inv_section_length;
        LLVector3 b = (mSection[i+1].mPosition-mSection[i].mPosition - a*(section_length*section_length));
        b *= inv_section_length;

        mSection[i].mdPosition = b;
    }

    // i = NumSections
    mSection[i].mdPosition = (mSection[i].mPosition - mSection[i-1].mPosition) * inv_section_length;

    // Create points
    llassert(mRenderRes > -1);
    S32 num_render_sections = 1<<mRenderRes;
    if (path->getPathLength() != num_render_sections+1)
    {
        ((LLVOVolume*) mVO)->mVolumeChanged = TRUE;
        volume->resizePath(num_render_sections+1);
    }

    LLPath::PathPt *new_point;

    LLFlexibleObjectSection newSection[ (1<<FLEXIBLE_OBJECT_MAX_SECTIONS)+1 ];
    remapSections(mSection, mSimulateRes, newSection, mRenderRes);

    //generate transform from global to prim space
    LLVector3 delta_scale = LLVector3(1,1,1);
    LLVector3 delta_pos;
    LLQuaternion delta_rot;

    delta_rot = ~getFrameRotation();
    delta_pos = -getFramePosition()*delta_rot;

    // Vertex transform (4x4)
    LLVector3 x_axis = LLVector3(delta_scale.mV[VX], 0.f, 0.f) * delta_rot;
    LLVector3 y_axis = LLVector3(0.f, delta_scale.mV[VY], 0.f) * delta_rot;
    LLVector3 z_axis = LLVector3(0.f, 0.f, delta_scale.mV[VZ]) * delta_rot;

    LLMatrix4 rel_xform;
    rel_xform.initRows(LLVector4(x_axis, 0.f),
                                LLVector4(y_axis, 0.f),
                                LLVector4(z_axis, 0.f),
                                LLVector4(delta_pos, 1.f));

    LL_CHECK_MEMORY
    for (i=0; i<=num_render_sections; ++i)
    {
        new_point = &path->mPath[i];
        LLVector3 pos = newSection[i].mPosition * rel_xform;
        LLQuaternion rot = mSection[i].mAxisRotation * newSection[i].mRotation * delta_rot;

        LLVector3 np(new_point->mPos.getF32ptr());

        if (!mUpdated || (np-pos).magVec()/mVO->mDrawable->mDistanceWRTCamera > 0.001f)
        {
            new_point->mPos.load3((newSection[i].mPosition * rel_xform).mV);
            mUpdated = FALSE;
        }

        new_point->mRot.loadu(LLMatrix3(rot));
        new_point->mScale.set(newSection[i].mScale.mV[0], newSection[i].mScale.mV[1], 0,1);
        new_point->mTexT = ((F32)i)/(num_render_sections);
    }
    LL_CHECK_MEMORY
    mLastSegmentRotation = parentSegmentRotation;
}


void LLVolumeImplFlexible::preRebuild()
{
    if (!mUpdated)
    {
        LL_PROFILE_ZONE_SCOPED;
        doFlexibleRebuild(false);
    }
}

void LLVolumeImplFlexible::doFlexibleRebuild(bool rebuild_volume)
{
    LLVolume* volume = mVO->getVolume();
    if (volume)
    {
        if (rebuild_volume)
        {
            volume->setDirty();
        }
        volume->regen();
    }

    mUpdated = TRUE;
}

//------------------------------------------------------------------

void LLVolumeImplFlexible::onSetScale(const LLVector3& scale, BOOL damped)
{
    setAttributesOfAllSections((LLVector3*) &scale);
}

BOOL LLVolumeImplFlexible::doUpdateGeometry(LLDrawable *drawable)
{
    LL_PROFILE_ZONE_SCOPED;
    LLVOVolume *volume = (LLVOVolume*)mVO;

    if (mVO->isAttachment())
    {   //don't update flexible attachments for impostored avatars unless the
        //impostor is being updated this frame (w00!)
        LLViewerObject* parent = (LLViewerObject*) mVO->getParent();
        while (parent && !parent->isAvatar())
        {
            parent = (LLViewerObject*) parent->getParent();
        }

        if (parent)
        {
            LLVOAvatar* avatar = (LLVOAvatar*) parent;
            if (avatar->isImpostor() && !avatar->needsImpostorUpdate())
            {
                return TRUE;
            }
        }
    }

    if (volume->mDrawable.isNull())
    {
        return TRUE; // No update to complete
    }

    if (volume->mLODChanged)
    {
        LLVolumeParams volume_params = volume->getVolume()->getParams();
        volume->setVolume(volume_params, 0);
        mUpdated = FALSE;
    }

    volume->updateRelativeXform();

    doFlexibleUpdate();

    // Object may have been rotated, which means it needs a rebuild.  See SL-47220
    BOOL    rotated = FALSE;
    LLQuaternion cur_rotation = getFrameRotation();
    if ( cur_rotation != mLastFrameRotation )
    {
        mLastFrameRotation = cur_rotation;
        rotated = TRUE;
    }

    if (volume->mLODChanged || volume->mFaceMappingChanged ||
        volume->mVolumeChanged || drawable->isState(LLDrawable::REBUILD_MATERIAL))
    {
        volume->regenFaces();
        volume->mDrawable->setState(LLDrawable::REBUILD_VOLUME);
        volume->dirtySpatialGroup();
        {
            doFlexibleRebuild(volume->mVolumeChanged);
        }
        volume->genBBoxes(isVolumeGlobal());
    }
    else if (!mUpdated || rotated)
    {
        volume->mDrawable->setState(LLDrawable::REBUILD_POSITION);
        LLSpatialGroup* group = volume->mDrawable->getSpatialGroup();
        if (group)
        {
            group->dirtyMesh();
        }
        volume->genBBoxes(isVolumeGlobal());
    }

    volume->mVolumeChanged = FALSE;
    volume->mLODChanged = FALSE;
    volume->mFaceMappingChanged = FALSE;

    // clear UV flag
    drawable->clearState(LLDrawable::UV);

    return TRUE;
}

//----------------------------------------------------------------------------------
void LLVolumeImplFlexible::setCollisionSphere( LLVector3 p, F32 r )
{
    mCollisionSpherePosition = p;
    mCollisionSphereRadius   = r;

}//------------------------------------------------------------------


//----------------------------------------------------------------------------------
void LLVolumeImplFlexible::setUsingCollisionSphere( bool u )
{
}//------------------------------------------------------------------


//----------------------------------------------------------------------------------
void LLVolumeImplFlexible::setRenderingCollisionSphere( bool r )
{
}//------------------------------------------------------------------

//------------------------------------------------------------------
LLVector3 LLVolumeImplFlexible::getEndPosition()
{
    S32 num_sections = 1 << mAttributes->getSimulateLOD();
    return mSection[ num_sections ].mPosition;

}//------------------------------------------------------------------


//------------------------------------------------------------------
LLVector3 LLVolumeImplFlexible::getNodePosition( int nodeIndex )
{
    S32 num_sections = 1 << mAttributes->getSimulateLOD();
    if ( nodeIndex > num_sections - 1 )
    {
        nodeIndex = num_sections - 1;
    }
    else if ( nodeIndex < 0 )
    {
        nodeIndex = 0;
    }

    return mSection[ nodeIndex ].mPosition;

}//------------------------------------------------------------------

LLVector3 LLVolumeImplFlexible::getPivotPosition() const
{
    return getAnchorPosition();
}

//------------------------------------------------------------------
LLVector3 LLVolumeImplFlexible::getAnchorPosition() const
{
    LLVector3 BasePosition = getFramePosition();
    LLQuaternion parentSegmentRotation = getFrameRotation();
    LLVector3 anchorDirectionRotated = LLVector3::z_axis * parentSegmentRotation;
    LLVector3 anchorScale = mVO->mDrawable->getScale();
    return BasePosition - (anchorScale.mV[VZ]/2 * anchorDirectionRotated);

}//------------------------------------------------------------------


//------------------------------------------------------------------
LLQuaternion LLVolumeImplFlexible::getEndRotation()
{
    return mLastSegmentRotation;

}//------------------------------------------------------------------


void LLVolumeImplFlexible::updateRelativeXform(bool force_identity)
{
    LLQuaternion delta_rot;
    LLVector3 delta_pos, delta_scale;
    LLVOVolume* vo = (LLVOVolume*) mVO;

    bool use_identity = vo->mDrawable->isSpatialRoot() || force_identity;

    //matrix from local space to parent relative/global space
    delta_rot = use_identity ? LLQuaternion() : vo->mDrawable->getRotation();
    delta_pos = use_identity ? LLVector3(0,0,0) : vo->mDrawable->getPosition();
    delta_scale = LLVector3(1,1,1);

    // Vertex transform (4x4)
    LLVector3 x_axis = LLVector3(delta_scale.mV[VX], 0.f, 0.f) * delta_rot;
    LLVector3 y_axis = LLVector3(0.f, delta_scale.mV[VY], 0.f) * delta_rot;
    LLVector3 z_axis = LLVector3(0.f, 0.f, delta_scale.mV[VZ]) * delta_rot;

    vo->mRelativeXform.initRows(LLVector4(x_axis, 0.f),
                            LLVector4(y_axis, 0.f),
                            LLVector4(z_axis, 0.f),
                            LLVector4(delta_pos, 1.f));

    x_axis.normVec();
    y_axis.normVec();
    z_axis.normVec();

    vo->mRelativeXformInvTrans.setRows(x_axis, y_axis, z_axis);
}

const LLMatrix4& LLVolumeImplFlexible::getWorldMatrix(LLXformMatrix* xform) const
{
    return xform->getWorldMatrix();
}