1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
/**
* @file primitive.cpp
* @brief LL GLTF Implementation
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2024, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "../llviewerprecompiledheaders.h"
#include "asset.h"
#include "buffer_util.h"
#include "../lltinygltfhelper.h"
using namespace LL::GLTF;
void Primitive::allocateGLResources(Asset& asset)
{
// allocate vertex buffer
// We diverge from the intent of the GLTF format here to work with our existing render pipeline
// GLTF wants us to copy the buffer views into GPU storage as is and build render commands that source that data.
// For our engine, though, it's better to rearrange the buffers at load time into a layout that's more consistent.
// The GLTF native approach undoubtedly works well if you can count on VAOs, but VAOs perform much worse with our scenes.
// load vertex data
for (auto& it : mAttributes)
{
const std::string& attribName = it.first;
Accessor& accessor = asset.mAccessors[it.second];
// load vertex data
if (attribName == "POSITION")
{
copy(asset, accessor, mPositions);
}
else if (attribName == "NORMAL")
{
copy(asset, accessor, mNormals);
}
else if (attribName == "TANGENT")
{
copy(asset, accessor, mTangents);
}
else if (attribName == "COLOR_0")
{
copy(asset, accessor, mColors);
}
else if (attribName == "TEXCOORD_0")
{
copy(asset, accessor, mTexCoords);
}
else if (attribName == "JOINTS_0")
{
copy(asset, accessor, mJoints);
}
else if (attribName == "WEIGHTS_0")
{
copy(asset, accessor, mWeights);
}
}
// copy index buffer
if (mIndices != INVALID_INDEX)
{
Accessor& accessor = asset.mAccessors[mIndices];
copy(asset, accessor, mIndexArray);
}
U32 mask = ATTRIBUTE_MASK;
if (!mWeights.empty())
{
mask |= LLVertexBuffer::MAP_WEIGHT4;
}
mVertexBuffer = new LLVertexBuffer(mask);
mVertexBuffer->allocateBuffer(mPositions.size(), mIndexArray.size()*2); // double the size of the index buffer for 32-bit indices
mVertexBuffer->setBuffer();
mVertexBuffer->setPositionData(mPositions.data());
if (!mIndexArray.empty())
{
mVertexBuffer->setIndexData(mIndexArray.data());
}
if (mTexCoords.empty())
{
mTexCoords.resize(mPositions.size());
}
// flip texcoord y, upload, then flip back (keep the off-spec data in vram only)
for (auto& tc : mTexCoords)
{
tc[1] = 1.f - tc[1];
}
mVertexBuffer->setTexCoord0Data(mTexCoords.data());
for (auto& tc : mTexCoords)
{
tc[1] = 1.f - tc[1];
}
if (mColors.empty())
{
mColors.resize(mPositions.size(), LLColor4U::white);
}
// bake material basecolor into color array
if (mMaterial != INVALID_INDEX)
{
const Material& material = asset.mMaterials[mMaterial];
LLColor4 baseColor = material.mMaterial->mBaseColor;
for (auto& dst : mColors)
{
dst = LLColor4U(baseColor * LLColor4(dst));
}
}
mVertexBuffer->setColorData(mColors.data());
if (mNormals.empty())
{
mNormals.resize(mPositions.size(), LLVector4a(0, 0, 1, 0));
}
mVertexBuffer->setNormalData(mNormals.data());
if (mTangents.empty())
{
// TODO: generate tangents if needed
mTangents.resize(mPositions.size(), LLVector4a(1, 0, 0, 1));
}
mVertexBuffer->setTangentData(mTangents.data());
if (!mWeights.empty())
{
std::vector<LLVector4a> weight_data;
weight_data.resize(mWeights.size());
F32 max_weight = 1.f - FLT_EPSILON*100.f;
LLVector4a maxw(max_weight, max_weight, max_weight, max_weight);
for (U32 i = 0; i < mWeights.size(); ++i)
{
LLVector4a& w = weight_data[i];
w.setMin(mWeights[i], maxw);
w.add(mJoints[i]);
};
mVertexBuffer->setWeight4Data(weight_data.data());
}
createOctree();
mVertexBuffer->unbind();
}
void initOctreeTriangle(LLVolumeTriangle* tri, F32 scaler, S32 i0, S32 i1, S32 i2, const LLVector4a& v0, const LLVector4a& v1, const LLVector4a& v2)
{
//store pointers to vertex data
tri->mV[0] = &v0;
tri->mV[1] = &v1;
tri->mV[2] = &v2;
//store indices
tri->mIndex[0] = i0;
tri->mIndex[1] = i1;
tri->mIndex[2] = i2;
//get minimum point
LLVector4a min = v0;
min.setMin(min, v1);
min.setMin(min, v2);
//get maximum point
LLVector4a max = v0;
max.setMax(max, v1);
max.setMax(max, v2);
//compute center
LLVector4a center;
center.setAdd(min, max);
center.mul(0.5f);
tri->mPositionGroup = center;
//compute "radius"
LLVector4a size;
size.setSub(max, min);
tri->mRadius = size.getLength3().getF32() * scaler;
}
void Primitive::createOctree()
{
// create octree
mOctree = new LLVolumeOctree();
F32 scaler = 0.25f;
if (mMode == TINYGLTF_MODE_TRIANGLES)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() / 3;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index * 3;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[index];
S32 i1 = mIndexArray[index + 1];
S32 i2 = mIndexArray[index + 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_TRIANGLE_STRIP)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index + 2;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[index];
S32 i1 = mIndexArray[index - 1];
S32 i2 = mIndexArray[index - 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_TRIANGLE_FAN)
{
const U32 num_triangles = mVertexBuffer->getNumIndices() - 2;
// Initialize all the triangles we need
mOctreeTriangles.resize(num_triangles);
for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
{ //for each triangle
const U32 index = triangle_index + 2;
LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
S32 i0 = mIndexArray[0];
S32 i1 = mIndexArray[index - 1];
S32 i2 = mIndexArray[index - 2];
const LLVector4a& v0 = mPositions[i0];
const LLVector4a& v1 = mPositions[i1];
const LLVector4a& v2 = mPositions[i2];
initOctreeTriangle(tri, scaler, i0, i1, i2, v0, v1, v2);
//insert
mOctree->insert(tri);
}
}
else if (mMode == TINYGLTF_MODE_POINTS ||
mMode == TINYGLTF_MODE_LINE ||
mMode == TINYGLTF_MODE_LINE_LOOP ||
mMode == TINYGLTF_MODE_LINE_STRIP)
{
// nothing to do, no volume... maybe add some collision geometry around these primitive types?
}
else
{
LL_ERRS() << "Unsupported Primitive mode" << LL_ENDL;
}
//remove unneeded octree layers
while (!mOctree->balance()) {}
//calculate AABB for each node
LLVolumeOctreeRebound rebound;
rebound.traverse(mOctree);
}
const LLVolumeTriangle* Primitive::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
LLVector4a* intersection, LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out)
{
if (mOctree.isNull())
{
return nullptr;
}
LLVector4a dir;
dir.setSub(end, start);
F32 closest_t = 2.f; // must be larger than 1
//create a proxy LLVolumeFace for the raycast
LLVolumeFace face;
face.mPositions = mPositions.data();
face.mTexCoords = mTexCoords.data();
face.mNormals = mNormals.data();
face.mTangents = mTangents.data();
face.mIndices = nullptr; // unreferenced
face.mNumIndices = mIndexArray.size();
face.mNumVertices = mPositions.size();
LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out);
intersect.traverse(mOctree);
// null out proxy data so it doesn't get freed
face.mPositions = face.mNormals = face.mTangents = nullptr;
face.mIndices = nullptr;
face.mTexCoords = nullptr;
return intersect.mHitTriangle;
}
Primitive::~Primitive()
{
mOctree = nullptr;
}
const Primitive& Primitive::operator=(const tinygltf::Primitive& src)
{
// load material
mMaterial = src.material;
// load mode
mMode = src.mode;
// load indices
mIndices = src.indices;
// load attributes
for (auto& it : src.attributes)
{
mAttributes[it.first] = it.second;
}
switch (mMode)
{
case TINYGLTF_MODE_POINTS:
mGLMode = LLRender::POINTS;
break;
case TINYGLTF_MODE_LINE:
mGLMode = LLRender::LINES;
break;
case TINYGLTF_MODE_LINE_LOOP:
mGLMode = LLRender::LINE_LOOP;
break;
case TINYGLTF_MODE_LINE_STRIP:
mGLMode = LLRender::LINE_STRIP;
break;
case TINYGLTF_MODE_TRIANGLES:
mGLMode = LLRender::TRIANGLES;
break;
case TINYGLTF_MODE_TRIANGLE_STRIP:
mGLMode = LLRender::TRIANGLE_STRIP;
break;
case TINYGLTF_MODE_TRIANGLE_FAN:
mGLMode = LLRender::TRIANGLE_FAN;
break;
default:
mGLMode = GL_TRIANGLES;
}
return *this;
}
|