1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
|
/**
* @file LLGLTFLoader.cpp
* @brief LLGLTFLoader class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llgltfloader.h"
#include "meshoptimizer.h"
#include <glm/gtc/packing.hpp>
// Import & define single-header gltf import/export lib
#define TINYGLTF_IMPLEMENTATION
#define TINYGLTF_USE_CPP14 // default is C++ 11
// tinygltf by default loads image files using STB
#define STB_IMAGE_IMPLEMENTATION
// to use our own image loading:
// 1. replace this definition with TINYGLTF_NO_STB_IMAGE
// 2. provide image loader callback with TinyGLTF::SetImageLoader(LoadimageDataFunction LoadImageData, void *user_data)
// tinygltf saves image files using STB
#define STB_IMAGE_WRITE_IMPLEMENTATION
// similarly, can override with TINYGLTF_NO_STB_IMAGE_WRITE and TinyGLTF::SetImageWriter(fxn, data)
// Additionally, disable inclusion of STB header files entirely with
// TINYGLTF_NO_INCLUDE_STB_IMAGE
// TINYGLTF_NO_INCLUDE_STB_IMAGE_WRITE
#include "tinygltf/tiny_gltf.h"
// TODO: includes inherited from dae loader. Validate / prune
#include "llsdserialize.h"
#include "lljoint.h"
#include "llbase64.h"
#include "lldir.h"
#include "llmatrix4a.h"
#include <boost/regex.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <fstream>
static const std::string lod_suffix[LLModel::NUM_LODS] =
{
"_LOD0",
"_LOD1",
"_LOD2",
"",
"_PHYS",
};
// Premade rotation matrix, GLTF is Y-up while SL is Z-up
static const glm::mat4 coord_system_rotation(
1.f, 0.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, -1.f, 0.f, 0.f,
0.f, 0.f, 0.f, 1.f
);
static const glm::mat4 coord_system_rotationxy(
0.f, 1.f, 0.f, 0.f,
-1.f, 0.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f
);
static const S32 VERTICIES_LIMIT = USHRT_MAX - 2;
LLGLTFLoader::LLGLTFLoader(std::string filename,
S32 lod,
LLModelLoader::load_callback_t load_cb,
LLModelLoader::joint_lookup_func_t joint_lookup_func,
LLModelLoader::texture_load_func_t texture_load_func,
LLModelLoader::state_callback_t state_cb,
void * opaque_userdata,
JointTransformMap & jointTransformMap,
JointNameSet & jointsFromNodes,
std::map<std::string, std::string, std::less<>> & jointAliasMap,
U32 maxJointsPerMesh,
U32 modelLimit,
U32 debugMode,
std::vector<LLJointData> viewer_skeleton) //,
//bool preprocess)
: LLModelLoader( filename,
lod,
load_cb,
joint_lookup_func,
texture_load_func,
state_cb,
opaque_userdata,
jointTransformMap,
jointsFromNodes,
jointAliasMap,
maxJointsPerMesh,
modelLimit,
debugMode)
, mViewerJointData(viewer_skeleton)
, mGltfLoaded(false)
, mApplyXYRotation(false)
{
}
LLGLTFLoader::~LLGLTFLoader() {}
bool LLGLTFLoader::OpenFile(const std::string &filename)
{
// Clear the material cache for new file
mMaterialCache.clear();
tinygltf::TinyGLTF loader;
std::string filename_lc(filename);
LLStringUtil::toLower(filename_lc);
try
{
mGltfLoaded = mGLTFAsset.load(filename, false);
}
catch (const std::exception& e)
{
LL_WARNS() << "Exception in LLModelLoader::run: " << e.what() << LL_ENDL;
LLSD args;
args["Message"] = "ParsingErrorException";
args["FILENAME"] = filename;
args["EXCEPTION"] = e.what();
mWarningsArray.append(args);
setLoadState(ERROR_PARSING);
return false;
}
catch (...)
{
LOG_UNHANDLED_EXCEPTION("LLGLTFLoader");
LLSD args;
args["Message"] = "ParsingErrorException";
args["FILENAME"] = filename;
args["EXCEPTION"] = "Unknown exception";
mWarningsArray.append(args);
setLoadState(ERROR_PARSING);
return false;
}
if (!mGltfLoaded)
{
notifyUnsupportedExtension(true);
for (const auto& buffer : mGLTFAsset.mBuffers)
{
if (buffer.mByteLength > 0 && buffer.mData.empty())
{
bool bin_file = buffer.mUri.ends_with(".bin");
LLSD args;
args["Message"] = bin_file ? "ParsingErrorMissingBufferBin" : "ParsingErrorMissingBuffer";
args["BUFFER_NAME"] = buffer.mName;
args["BUFFER_URI"] = buffer.mUri;
mWarningsArray.append(args);
}
}
setLoadState(ERROR_PARSING);
return false;
}
notifyUnsupportedExtension(false);
bool meshesLoaded = parseMeshes();
setLoadState(DONE);
return meshesLoaded;
}
void LLGLTFLoader::addModelToScene(
LLModel* pModel,
const std::string& model_name,
U32 submodel_limit,
const LLMatrix4& transformation,
const LLVolumeParams& volume_params,
const material_map& mats)
{
U32 volume_faces = pModel->getNumVolumeFaces();
// Side-steps all manner of issues when splitting models
// and matching lower LOD materials to base models
//
pModel->sortVolumeFacesByMaterialName();
int submodelID = 0;
// remove all faces that definitely won't fit into one model and submodel limit
U32 face_limit = (submodel_limit + 1) * LL_SCULPT_MESH_MAX_FACES;
if (face_limit < volume_faces)
{
LL_WARNS("GLTF_IMPORT") << "Model contains " << volume_faces
<< " faces, exceeding the limit of " << face_limit << LL_ENDL;
LLSD args;
args["Message"] = "ModelTooManySubmodels";
args["MODEL_NAME"] = pModel->mLabel;
args["SUBMODEL_COUNT"] = static_cast<S32>(llfloor((F32)volume_faces / LL_SCULPT_MESH_MAX_FACES));
args["SUBMODEL_LIMIT"] = static_cast<S32>(submodel_limit);
mWarningsArray.append(args);
pModel->setNumVolumeFaces(face_limit);
}
LLVolume::face_list_t remainder;
std::vector<LLModel*> ready_models;
LLModel* current_model = pModel;
do
{
current_model->trimVolumeFacesToSize(LL_SCULPT_MESH_MAX_FACES, &remainder);
volume_faces = static_cast<U32>(remainder.size());
// Don't add to scene yet because weights and materials aren't ready.
// Just save it
ready_models.push_back(current_model);
// If we have left-over volume faces, create another model
// to absorb them.
if (volume_faces)
{
LLModel* next = new LLModel(volume_params, 0.f);
next->ClearFacesAndMaterials();
next->mSubmodelID = ++submodelID;
std::string instance_name = model_name;
if (next->mSubmodelID > 0)
{
instance_name += (char)((int)'a' + next->mSubmodelID);
}
// Check for duplicates and add copy suffix if needed
int duplicate_count = 0;
for (const auto& inst : mScene[transformation])
{
if (inst.mLabel == instance_name)
{
++duplicate_count;
}
}
if (duplicate_count > 0) {
instance_name += "_copy_" + std::to_string(duplicate_count);
}
next->mLabel = instance_name;
next->getVolumeFaces() = remainder;
next->mNormalizedScale = current_model->mNormalizedScale;
next->mNormalizedTranslation = current_model->mNormalizedTranslation;
next->mSkinWeights = current_model->mSkinWeights;
next->mPosition = current_model->mPosition;
const LLMeshSkinInfo& current_skin_info = current_model->mSkinInfo;
LLMeshSkinInfo& next_skin_info = next->mSkinInfo;
next_skin_info.mJointNames = current_skin_info.mJointNames;
next_skin_info.mJointNums = current_skin_info.mJointNums;
next_skin_info.mBindShapeMatrix = current_skin_info.mBindShapeMatrix;
next_skin_info.mInvBindMatrix = current_skin_info.mInvBindMatrix;
next_skin_info.mAlternateBindMatrix = current_skin_info.mAlternateBindMatrix;
next_skin_info.mPelvisOffset = current_skin_info.mPelvisOffset;
if (current_model->mMaterialList.size() > LL_SCULPT_MESH_MAX_FACES)
{
next->mMaterialList.assign(current_model->mMaterialList.begin() + LL_SCULPT_MESH_MAX_FACES, current_model->mMaterialList.end());
current_model->mMaterialList.resize(LL_SCULPT_MESH_MAX_FACES);
}
current_model = next;
}
remainder.clear();
} while (volume_faces);
for (auto model : ready_models)
{
// remove unused/redundant vertices
model->remapVolumeFaces();
mModelList.push_back(model);
std::map<std::string, LLImportMaterial> materials;
for (U32 i = 0; i < (U32)model->mMaterialList.size(); ++i)
{
material_map::const_iterator found = mats.find(model->mMaterialList[i]);
if (found != mats.end())
{
materials[model->mMaterialList[i]] = found->second;
}
else
{
materials[model->mMaterialList[i]] = LLImportMaterial();
}
}
// Keep base name for scene instance.
std::string instance_name = model->mLabel;
// Add suffix. Suffix is nessesary for model matching logic
// because sometimes higher lod can be used as a lower one, so models
// need unique names not just in scope of one lod, but across lods.
model->mLabel += lod_suffix[mLod];
mScene[transformation].push_back(LLModelInstance(model, instance_name, transformation, materials));
stretch_extents(model, transformation);
}
}
bool LLGLTFLoader::parseMeshes()
{
if (!mGltfLoaded) return false;
// 2022-04 DJH Volume params from dae example. TODO understand PCODE
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
mTransform.setIdentity();
for (auto& node : mGLTFAsset.mNodes)
{
// Make node matrix valid for correct transformation
node.makeMatrixValid();
}
if (mGLTFAsset.mSkins.size() > 0)
{
checkForXYrotation(mGLTFAsset.mSkins[0]);
populateJointGroups();
}
// Populate the joints from skins first.
// Multiple meshes can share the same skin, so preparing skins beforehand.
for (S32 i = 0; i < mGLTFAsset.mSkins.size(); i++)
{
populateJointsFromSkin(i);
}
// Track how many times each mesh name has been used
std::map<std::string, S32> mesh_name_counts;
// For now use mesh count, but might be better to do 'mNodes.size() - joints count'.
U32 submodel_limit = mGLTFAsset.mMeshes.size() > 0 ? mGeneratedModelLimit / (U32)mGLTFAsset.mMeshes.size() : 0;
// Check if we have scenes defined
if (!mGLTFAsset.mScenes.empty())
{
// Process the default scene (or first scene if no default)
S32 scene_idx = mGLTFAsset.mScene >= 0 ? mGLTFAsset.mScene : 0;
if (scene_idx < mGLTFAsset.mScenes.size())
{
const LL::GLTF::Scene& scene = mGLTFAsset.mScenes[scene_idx];
LL_INFOS("GLTF_IMPORT") << "Processing scene " << scene_idx << " with " << scene.mNodes.size() << " root nodes" << LL_ENDL;
// Process all root nodes defined in the scene
for (S32 root_idx : scene.mNodes)
{
if (root_idx >= 0 && root_idx < static_cast<S32>(mGLTFAsset.mNodes.size()))
{
processNodeHierarchy(root_idx, mesh_name_counts, submodel_limit, volume_params);
}
}
}
}
else
{
LL_WARNS("GLTF_IMPORT") << "No scenes defined in GLTF file" << LL_ENDL;
LLSD args;
args["Message"] = "NoScenesFound";
mWarningsArray.append(args);
return false;
}
checkGlobalJointUsage();
return true;
}
void LLGLTFLoader::processNodeHierarchy(S32 node_idx, std::map<std::string, S32>& mesh_name_counts, U32 submodel_limit, const LLVolumeParams& volume_params)
{
if (node_idx < 0 || node_idx >= static_cast<S32>(mGLTFAsset.mNodes.size()))
return;
const LL::GLTF::Node& node = mGLTFAsset.mNodes[node_idx];
LL_DEBUGS("GLTF_IMPORT") << "Processing node " << node_idx << " (" << node.mName << ")"
<< " - has mesh: " << (node.mMesh >= 0 ? "yes" : "no")
<< " - children: " << node.mChildren.size() << LL_ENDL;
// Process this node's mesh if it has one
if (node.mMesh >= 0 && node.mMesh < mGLTFAsset.mMeshes.size())
{
LLMatrix4 transformation;
material_map mats;
LLModel* pModel = new LLModel(volume_params, 0.f);
const LL::GLTF::Mesh& mesh = mGLTFAsset.mMeshes[node.mMesh];
// Get base mesh name and track usage
std::string base_name = getLodlessLabel(mesh);
if (base_name.empty())
{
base_name = "mesh_" + std::to_string(node.mMesh);
}
S32 instance_count = mesh_name_counts[base_name]++;
// make name unique
if (instance_count > 0)
{
base_name = base_name + "_copy_" + std::to_string(instance_count);
}
if (populateModelFromMesh(pModel, base_name, mesh, node, mats) &&
(LLModel::NO_ERRORS == pModel->getStatus()) &&
validate_model(pModel))
{
mTransform.setIdentity();
transformation = mTransform;
// adjust the transformation to compensate for mesh normalization
LLVector3 mesh_scale_vector;
LLVector3 mesh_translation_vector;
pModel->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);
LLMatrix4 mesh_translation;
mesh_translation.setTranslation(mesh_translation_vector);
mesh_translation *= transformation;
transformation = mesh_translation;
LLMatrix4 mesh_scale;
mesh_scale.initScale(mesh_scale_vector);
mesh_scale *= transformation;
transformation = mesh_scale;
if (node.mSkin >= 0)
{
// "Bind Shape Matrix" is supposed to transform the geometry of the skinned mesh
// into the coordinate space of the joints.
// In GLTF, this matrix is omitted, and it is assumed that this transform is either
// premultiplied with the mesh data, or postmultiplied to the inverse bind matrices.
//
// TODO: There appears to be missing rotation when joints rotate the model
// or inverted bind matrices are missing inherited rotation
// (based of values the 'bento shoes' mesh might be missing 90 degrees horizontaly
// prior to skinning)
pModel->mSkinInfo.mBindShapeMatrix.loadu(mesh_scale);
LL_INFOS("GLTF_DEBUG") << "Model: " << pModel->mLabel << " mBindShapeMatrix: " << pModel->mSkinInfo.mBindShapeMatrix << LL_ENDL;
}
if (transformation.determinant() < 0)
{ // negative scales are not supported
LL_INFOS("GLTF_IMPORT") << "Negative scale detected, unsupported post-normalization transform. domInstance_geometry: "
<< pModel->mLabel << LL_ENDL;
LLSD args;
args["Message"] = "NegativeScaleNormTrans";
args["LABEL"] = pModel->mLabel;
mWarningsArray.append(args);
}
addModelToScene(pModel, base_name, submodel_limit, transformation, volume_params, mats);
mats.clear();
}
else
{
setLoadState(ERROR_MODEL + pModel->getStatus());
delete pModel;
return;
}
}
else if (node.mMesh >= 0)
{
// Log invalid mesh reference
LL_WARNS("GLTF_IMPORT") << "Node " << node_idx << " (" << node.mName
<< ") references invalid mesh " << node.mMesh
<< " (total meshes: " << mGLTFAsset.mMeshes.size() << ")" << LL_ENDL;
LLSD args;
args["Message"] = "InvalidMeshReference";
args["NODE_NAME"] = node.mName;
args["MESH_INDEX"] = node.mMesh;
args["TOTAL_MESHES"] = static_cast<S32>(mGLTFAsset.mMeshes.size());
mWarningsArray.append(args);
}
// Process all children recursively
for (S32 child_idx : node.mChildren)
{
processNodeHierarchy(child_idx, mesh_name_counts, submodel_limit, volume_params);
}
}
void LLGLTFLoader::computeCombinedNodeTransform(const LL::GLTF::Asset& asset, S32 node_index, glm::mat4& combined_transform) const
{
if (node_index < 0 || node_index >= static_cast<S32>(asset.mNodes.size()))
{
combined_transform = glm::mat4(1.0f);
return;
}
const auto& node = asset.mNodes[node_index];
// Ensure the node's matrix is valid
const_cast<LL::GLTF::Node&>(node).makeMatrixValid();
// Start with this node's transform
combined_transform = node.mMatrix;
// Find and apply parent transform if it exists
for (size_t i = 0; i < asset.mNodes.size(); ++i)
{
const auto& potential_parent = asset.mNodes[i];
auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), node_index);
if (it != potential_parent.mChildren.end())
{
// Found parent - recursively get its combined transform and apply it
glm::mat4 parent_transform;
computeCombinedNodeTransform(asset, static_cast<S32>(i), parent_transform);
combined_transform = parent_transform * combined_transform;
return; // Early exit - a node can only have one parent
}
}
}
bool LLGLTFLoader::addJointToModelSkin(LLMeshSkinInfo& skin_info, S32 gltf_skin_idx, size_t gltf_joint_idx)
{
const std::string& legal_name = mJointNames[gltf_skin_idx][gltf_joint_idx];
if (legal_name.empty())
{
llassert(false); // should have been stopped by gltf_joint_index_use[i] == -1
return false;
}
skin_info.mJointNames.push_back(legal_name);
skin_info.mJointNums.push_back(-1);
// In scope of same skin multiple meshes reuse same bind matrices
skin_info.mInvBindMatrix.push_back(mInverseBindMatrices[gltf_skin_idx][gltf_joint_idx]);
skin_info.mAlternateBindMatrix.push_back(mAlternateBindMatrices[gltf_skin_idx][gltf_joint_idx]);
// Track joint usage for this skin, for the sake of unused joints detection
mJointUsage[gltf_skin_idx][gltf_joint_idx]++;
return true;
}
LLGLTFLoader::LLGLTFImportMaterial LLGLTFLoader::processMaterial(S32 material_index, S32 fallback_index)
{
// Check cache first
auto cached = mMaterialCache.find(material_index);
if (cached != mMaterialCache.end())
{
return cached->second;
}
LLImportMaterial impMat;
impMat.mDiffuseColor = LLColor4::white; // Default color
// Generate material name
std::string materialName = generateMaterialName(material_index, fallback_index);
// Process material if available
if (material_index >= 0 && material_index < mGLTFAsset.mMaterials.size())
{
LL::GLTF::Material* material = &mGLTFAsset.mMaterials[material_index];
// Set diffuse color from base color factor
impMat.mDiffuseColor = LLColor4(
material->mPbrMetallicRoughness.mBaseColorFactor[0],
material->mPbrMetallicRoughness.mBaseColorFactor[1],
material->mPbrMetallicRoughness.mBaseColorFactor[2],
material->mPbrMetallicRoughness.mBaseColorFactor[3]
);
// Process base color texture if it exists
if (material->mPbrMetallicRoughness.mBaseColorTexture.mIndex >= 0)
{
S32 texIndex = material->mPbrMetallicRoughness.mBaseColorTexture.mIndex;
std::string filename = processTexture(texIndex, "base_color", material->mName);
if (!filename.empty())
{
impMat.mDiffuseMapFilename = filename;
impMat.mDiffuseMapLabel = material->mName.empty() ? filename : material->mName;
// Check if the texture is already loaded
S32 sourceIndex;
if (validateTextureIndex(texIndex, sourceIndex))
{
LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
if (image.mTexture.notNull())
{
impMat.setDiffuseMap(image.mTexture->getID());
LL_INFOS("GLTF_IMPORT") << "Using existing texture ID: " << image.mTexture->getID().asString() << LL_ENDL;
}
else
{
LL_INFOS("GLTF_IMPORT") << "Texture needs loading: " << impMat.mDiffuseMapFilename << LL_ENDL;
}
}
}
}
}
// Create cached material with both material and name
LLGLTFImportMaterial cachedMat(impMat, materialName);
// Cache the processed material
mMaterialCache[material_index] = cachedMat;
return cachedMat;
}
std::string LLGLTFLoader::processTexture(S32 texture_index, const std::string& texture_type, const std::string& material_name)
{
S32 sourceIndex;
if (!validateTextureIndex(texture_index, sourceIndex))
return "";
LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
// Process URI-based textures
if (!image.mUri.empty())
{
std::string filename = image.mUri;
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos)
{
filename = filename.substr(pos + 1);
}
LL_INFOS("GLTF_IMPORT") << "Found texture: " << filename << " for material: " << material_name << LL_ENDL;
LLSD args;
args["Message"] = "TextureFound";
args["TEXTURE_NAME"] = filename;
args["MATERIAL_NAME"] = material_name;
mWarningsArray.append(args);
return filename;
}
// Process embedded textures
if (image.mBufferView >= 0)
{
return extractTextureToTempFile(texture_index, texture_type);
}
return "";
}
bool LLGLTFLoader::validateTextureIndex(S32 texture_index, S32& source_index)
{
if (texture_index < 0 || texture_index >= mGLTFAsset.mTextures.size())
return false;
source_index = mGLTFAsset.mTextures[texture_index].mSource;
if (source_index < 0 || source_index >= mGLTFAsset.mImages.size())
return false;
return true;
}
std::string LLGLTFLoader::generateMaterialName(S32 material_index, S32 fallback_index)
{
if (material_index >= 0 && material_index < mGLTFAsset.mMaterials.size())
{
LL::GLTF::Material* material = &mGLTFAsset.mMaterials[material_index];
std::string materialName = material->mName;
if (materialName.empty())
{
materialName = "mat" + std::to_string(material_index);
}
return materialName;
}
else
{
return fallback_index >= 0 ? "mat_default" + std::to_string(fallback_index) : "mat_default";
}
}
bool LLGLTFLoader::populateModelFromMesh(LLModel* pModel, const std::string& base_name, const LL::GLTF::Mesh& mesh, const LL::GLTF::Node& nodeno, material_map& mats)
{
// Set the requested label for the floater display and uploading
pModel->mRequestedLabel = gDirUtilp->getBaseFileName(mFilename, true);
// Set only name, suffix will be added later
pModel->mLabel = base_name;
LL_DEBUGS("GLTF_DEBUG") << "Processing model " << pModel->mLabel << LL_ENDL;
pModel->ClearFacesAndMaterials();
S32 skinIdx = nodeno.mSkin;
// Compute final combined transform matrix (hierarchy + coordinate rotation)
S32 node_index = static_cast<S32>(&nodeno - &mGLTFAsset.mNodes[0]);
glm::mat4 hierarchy_transform;
computeCombinedNodeTransform(mGLTFAsset, node_index, hierarchy_transform);
// Combine transforms: coordinate rotation applied to hierarchy transform
glm::mat4 final_transform = coord_system_rotation * hierarchy_transform;
if (mApplyXYRotation)
{
final_transform = coord_system_rotationxy * final_transform;
}
// Check if we have a negative scale (flipped coordinate system)
bool hasNegativeScale = glm::determinant(final_transform) < 0.0f;
// Pre-compute normal transform matrix (transpose of inverse of upper-left 3x3)
const glm::mat3 normal_transform = glm::transpose(glm::inverse(glm::mat3(final_transform)));
// Mark unsuported joints with '-1' so that they won't get added into weights
// GLTF maps all joints onto all meshes. Gather use count per mesh to cut unused ones.
std::vector<S32> gltf_joint_index_use;
if (skinIdx >= 0 && mGLTFAsset.mSkins.size() > skinIdx)
{
LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx];
size_t jointCnt = gltf_skin.mJoints.size();
gltf_joint_index_use.resize(jointCnt, 0);
for (size_t i = 0; i < jointCnt; ++i)
{
if (mJointNames[skinIdx][i].empty())
{
// This might need to hold a substitute index
gltf_joint_index_use[i] = -1; // mark as unsupported
}
}
}
for (size_t prim_idx = 0; prim_idx < mesh.mPrimitives.size(); ++prim_idx)
{
const LL::GLTF::Primitive& prim = mesh.mPrimitives[prim_idx];
// So primitives already have all of the data we need for a given face in SL land.
// Primitives may only ever have a single material assigned to them - as the relation is 1:1 in terms of intended draw call
// count. Just go ahead and populate faces direct from the GLTF primitives here. -Geenz 2025-04-07
LLVolumeFace face;
std::vector<GLTFVertex> vertices;
// Use cached material processing
LLGLTFImportMaterial cachedMat = processMaterial(prim.mMaterial, pModel->getNumVolumeFaces() - 1);
LLImportMaterial impMat = cachedMat;
std::string materialName = cachedMat.name;
mats[materialName] = impMat;
if (prim.getIndexCount() % 3 != 0)
{
LL_WARNS("GLTF_IMPORT") << "Mesh '" << mesh.mName << "' primitive " << prim_idx
<< ": Invalid index count " << prim.getIndexCount()
<< " (not divisible by 3). GLTF files must contain triangulated geometry." << LL_ENDL;
LLSD args;
args["Message"] = "InvalidGeometryNonTriangulated";
args["MESH_NAME"] = mesh.mName;
args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx);
args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount());
mWarningsArray.append(args);
return false; // Skip this primitive
}
// Apply the global scale and center offset to all vertices
for (U32 i = 0; i < prim.getVertexCount(); i++)
{
// Use pre-computed final_transform
glm::vec4 pos(prim.mPositions[i][0], prim.mPositions[i][1], prim.mPositions[i][2], 1.0f);
glm::vec4 transformed_pos = final_transform * pos;
GLTFVertex vert;
vert.position = glm::vec3(transformed_pos);
if (!prim.mNormals.empty())
{
// Use pre-computed normal_transform
glm::vec3 normal_vec(prim.mNormals[i][0], prim.mNormals[i][1], prim.mNormals[i][2]);
vert.normal = glm::normalize(normal_transform * normal_vec);
}
else
{
// Use default normal (pointing up in model space)
vert.normal = glm::normalize(normal_transform * glm::vec3(0.0f, 0.0f, 1.0f));
LL_DEBUGS("GLTF_IMPORT") << "No normals found for primitive, using default normal." << LL_ENDL;
}
vert.uv0 = glm::vec2(prim.mTexCoords0[i][0], -prim.mTexCoords0[i][1]);
if (skinIdx >= 0)
{
vert.weights = glm::vec4(prim.mWeights[i]);
auto accessorIdx = prim.mAttributes.at("JOINTS_0");
LL::GLTF::Accessor::ComponentType componentType = LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE;
if (accessorIdx >= 0)
{
auto accessor = mGLTFAsset.mAccessors[accessorIdx];
componentType = accessor.mComponentType;
}
// The GLTF spec allows for either an unsigned byte for joint indices, or an unsigned short.
// Detect and unpack accordingly.
if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE)
{
auto ujoint = glm::unpackUint4x8((U32)(prim.mJoints[i] & 0xFFFFFFFF));
vert.joints = glm::u16vec4(ujoint.x, ujoint.y, ujoint.z, ujoint.w);
}
else if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_SHORT)
{
vert.joints = glm::unpackUint4x16(prim.mJoints[i]);
}
else
{
vert.joints = glm::zero<glm::u16vec4>();
vert.weights = glm::zero<glm::vec4>();
}
}
vertices.push_back(vert);
}
// Check for empty vertex array before processing
if (vertices.empty())
{
LL_WARNS("GLTF_IMPORT") << "Empty vertex array for primitive " << prim_idx << " in model " << mesh.mName << LL_ENDL;
LLSD args;
args["Message"] = "EmptyVertexArray";
args["MESH_NAME"] = mesh.mName;
args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx);
args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount());
mWarningsArray.append(args);
return false; // Skip this primitive
}
std::vector<LLVolumeFace::VertexData> faceVertices;
glm::vec3 min = glm::vec3(FLT_MAX);
glm::vec3 max = glm::vec3(-FLT_MAX);
for (U32 i = 0; i < vertices.size(); i++)
{
LLVolumeFace::VertexData vert;
// Update min/max bounds
if (i == 0)
{
min = max = vertices[i].position;
}
else
{
min.x = std::min(min.x, vertices[i].position.x);
min.y = std::min(min.y, vertices[i].position.y);
min.z = std::min(min.z, vertices[i].position.z);
max.x = std::max(max.x, vertices[i].position.x);
max.y = std::max(max.y, vertices[i].position.y);
max.z = std::max(max.z, vertices[i].position.z);
}
LLVector4a position = LLVector4a(vertices[i].position.x, vertices[i].position.y, vertices[i].position.z);
LLVector4a normal = LLVector4a(vertices[i].normal.x, vertices[i].normal.y, vertices[i].normal.z);
vert.setPosition(position);
vert.setNormal(normal);
vert.mTexCoord = LLVector2(vertices[i].uv0.x, vertices[i].uv0.y);
faceVertices.push_back(vert);
if (skinIdx >= 0)
{
// create list of weights that influence this vertex
LLModel::weight_list weight_list;
// Drop joints that viewer doesn't support (negative in gltf_joint_index_use_count)
// don't reindex them yet, more indexes will be removed
// Also drop joints that have no weight. GLTF stores 4 per vertex, so there might be
// 'empty' ones
if (gltf_joint_index_use[vertices[i].joints.x] >= 0
&& vertices[i].weights.x > 0.f)
{
weight_list.push_back(LLModel::JointWeight(vertices[i].joints.x, vertices[i].weights.x));
gltf_joint_index_use[vertices[i].joints.x]++;
}
if (gltf_joint_index_use[vertices[i].joints.y] >= 0
&& vertices[i].weights.y > 0.f)
{
weight_list.push_back(LLModel::JointWeight(vertices[i].joints.y, vertices[i].weights.y));
gltf_joint_index_use[vertices[i].joints.y]++;
}
if (gltf_joint_index_use[vertices[i].joints.z] >= 0
&& vertices[i].weights.z > 0.f)
{
weight_list.push_back(LLModel::JointWeight(vertices[i].joints.z, vertices[i].weights.z));
gltf_joint_index_use[vertices[i].joints.z]++;
}
if (gltf_joint_index_use[vertices[i].joints.w] >= 0
&& vertices[i].weights.w > 0.f)
{
weight_list.push_back(LLModel::JointWeight(vertices[i].joints.w, vertices[i].weights.w));
gltf_joint_index_use[vertices[i].joints.w]++;
}
std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater());
std::vector<LLModel::JointWeight> wght;
F32 total = 0.f;
for (U32 j = 0; j < llmin((U32)4, (U32)weight_list.size()); ++j)
{
// take up to 4 most significant weights
// Ported from the DAE loader - however, GLTF right now only supports up to four weights per vertex.
wght.push_back(weight_list[j]);
total += weight_list[j].mWeight;
}
if (total != 0.f)
{
F32 scale = 1.f / total;
if (scale != 1.f)
{ // normalize weights
for (U32 j = 0; j < wght.size(); ++j)
{
wght[j].mWeight *= scale;
}
}
}
if (wght.size() > 0)
{
pModel->mSkinWeights[LLVector3(vertices[i].position)] = wght;
}
}
}
// Indices handling
if (faceVertices.size() >= VERTICIES_LIMIT)
{
// Will have to remap 32 bit indices into 16 bit indices
// For the sake of simplicity build vector of 32 bit indices first
std::vector<U32> indices_32;
for (U32 i = 0; i < prim.getIndexCount(); i += 3)
{
// When processing indices, flip winding order if needed
if (hasNegativeScale)
{
// Flip winding order for negative scale
indices_32.push_back(prim.mIndexArray[i]);
indices_32.push_back(prim.mIndexArray[i + 2]); // Swap these two
indices_32.push_back(prim.mIndexArray[i + 1]);
}
else
{
indices_32.push_back(prim.mIndexArray[i]);
indices_32.push_back(prim.mIndexArray[i + 1]);
indices_32.push_back(prim.mIndexArray[i + 2]);
}
}
// Generates a vertex remap table with no gaps in the resulting sequence
std::vector<U32> remap(faceVertices.size());
size_t vertex_count = meshopt_generateVertexRemap(&remap[0], &indices_32[0], indices_32.size(), &faceVertices[0], faceVertices.size(), sizeof(LLVolumeFace::VertexData));
// Manually remap vertices
std::vector<LLVolumeFace::VertexData> optimized_vertices(vertex_count);
for (size_t i = 0; i < vertex_count; ++i)
{
optimized_vertices[i] = faceVertices[remap[i]];
}
std::vector<U32> optimized_indices(indices_32.size());
meshopt_remapIndexBuffer(&optimized_indices[0], &indices_32[0], indices_32.size(), &remap[0]);
// Sort indices to improve mesh splits (reducing amount of duplicated indices)
meshopt_optimizeVertexCache(&optimized_indices[0], &optimized_indices[0], indices_32.size(), vertex_count);
std::vector<U16> indices_16;
std::vector<S64> vertices_remap;
vertices_remap.resize(vertex_count, -1);
S32 created_faces = 0;
std::vector<LLVolumeFace::VertexData> face_verts;
min = glm::vec3(FLT_MAX);
max = glm::vec3(-FLT_MAX);
for (size_t idx = 0; idx < optimized_indices.size(); idx++)
{
size_t vert_index = optimized_indices[idx];
if (vertices_remap[vert_index] == -1)
{
// First encounter, add it
size_t new_vert_idx = face_verts.size();
vertices_remap[vert_index] = (S64)new_vert_idx;
face_verts.push_back(optimized_vertices[vert_index]);
vert_index = new_vert_idx;
// Update min/max bounds
const LLVector4a& vec = face_verts[new_vert_idx].getPosition();
if (new_vert_idx == 0)
{
min.x = vec[0];
min.y = vec[1];
min.z = vec[2];
max = min;
}
else
{
min.x = std::min(min.x, vec[0]);
min.y = std::min(min.y, vec[1]);
min.z = std::min(min.z, vec[2]);
max.x = std::max(max.x, vec[0]);
max.y = std::max(max.y, vec[1]);
max.z = std::max(max.z, vec[2]);
}
}
else
{
// already in vector, get position
vert_index = (size_t)vertices_remap[vert_index];
}
indices_16.push_back((U16)vert_index);
if (indices_16.size() % 3 == 0 && face_verts.size() >= VERTICIES_LIMIT - 1)
{
LLVolumeFace face;
face.fillFromLegacyData(face_verts, indices_16);
face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
pModel->getVolumeFaces().push_back(face);
pModel->getMaterialList().push_back(materialName);
created_faces++;
std::fill(vertices_remap.begin(), vertices_remap.end(), -1);
indices_16.clear();
face_verts.clear();
min = glm::vec3(FLT_MAX);
max = glm::vec3(-FLT_MAX);
}
}
if (indices_16.size() > 0 && face_verts.size() > 0)
{
LLVolumeFace face;
face.fillFromLegacyData(face_verts, indices_16);
face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
pModel->getVolumeFaces().push_back(face);
pModel->getMaterialList().push_back(materialName);
created_faces++;
}
LL_INFOS("GLTF_IMPORT") << "Primitive " << (S32)prim_idx << " from model " << pModel->mLabel
<< " is over vertices limit, it was split into " << created_faces
<< " faces" << LL_ENDL;
LLSD args;
args["Message"] = "ModelSplitPrimitive";
args["MODEL_NAME"] = pModel->mLabel;
args["FACE_COUNT"] = created_faces;
mWarningsArray.append(args);
}
else
{
// can use indices directly
std::vector<U16> indices;
for (U32 i = 0; i < prim.getIndexCount(); i += 3)
{
// When processing indices, flip winding order if needed
if (hasNegativeScale)
{
// Flip winding order for negative scale
indices.push_back(prim.mIndexArray[i]);
indices.push_back(prim.mIndexArray[i + 2]); // Swap these two
indices.push_back(prim.mIndexArray[i + 1]);
}
else
{
indices.push_back(prim.mIndexArray[i]);
indices.push_back(prim.mIndexArray[i + 1]);
indices.push_back(prim.mIndexArray[i + 2]);
}
}
face.fillFromLegacyData(faceVertices, indices);
face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
pModel->getVolumeFaces().push_back(face);
pModel->getMaterialList().push_back(materialName);
}
}
// Call normalizeVolumeFacesAndWeights to compute proper extents
pModel->normalizeVolumeFacesAndWeights();
// Fill joint names, bind matrices and remap weight indices
if (skinIdx >= 0)
{
LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx];
LLMeshSkinInfo& skin_info = pModel->mSkinInfo;
S32 valid_joints_count = mValidJointsCount[skinIdx];
S32 replacement_index = 0;
std::vector<S32> gltfindex_to_joitindex_map;
size_t jointCnt = gltf_skin.mJoints.size();
gltfindex_to_joitindex_map.resize(jointCnt, -1);
if (valid_joints_count > (S32)mMaxJointsPerMesh)
{
std::map<std::string, S32> goup_use_count;
for (const auto& elem : mJointGroups)
{
goup_use_count[elem.second.mGroup] = 0;
goup_use_count[elem.second.mParentGroup] = 0;
}
// Assume that 'Torso' group is always in use since that's what everything else is attached to
goup_use_count["Torso"] = 1;
// Note that Collisions and Extra groups are all over the place, might want to include them from the start
// or add individual when parents are added
// Check which groups are in use
for (size_t i = 0; i < jointCnt; ++i)
{
std::string& joint_name = mJointNames[skinIdx][i];
if (!joint_name.empty())
{
if (gltf_joint_index_use[i] > 0)
{
const JointGroups &group = mJointGroups[joint_name];
// Joint in use, increment it's groups
goup_use_count[group.mGroup]++;
goup_use_count[group.mParentGroup]++;
}
}
}
// 1. add joints that are in use directly
for (size_t i = 0; i < jointCnt; ++i)
{
// Process joint name and idnex
S32 joint = gltf_skin.mJoints[i];
if (gltf_joint_index_use[i] <= 0)
{
// unsupported (-1) joint, drop it
// unused (0) joint, drop it
continue;
}
if (addJointToModelSkin(skin_info, skinIdx, i))
{
gltfindex_to_joitindex_map[i] = replacement_index++;
}
}
// 2. add joints from groups that this model's joints belong to
// It's perfectly valid to have more joints than is in use
// Ex: sandals that make your legs digitigrade despite not skining to
// knees or the like.
// Todo: sort and add by usecount
for (size_t i = 0; i < jointCnt; ++i)
{
S32 joint = gltf_skin.mJoints[i];
if (gltf_joint_index_use[i] != 0)
{
// this step needs only joints that have zero uses
continue;
}
if (skin_info.mInvBindMatrix.size() > mMaxJointsPerMesh)
{
break;
}
const std::string& legal_name = mJointNames[skinIdx][i];
std::string group_name = mJointGroups[legal_name].mGroup;
if (goup_use_count[group_name] > 0)
{
if (addJointToModelSkin(skin_info, skinIdx, i))
{
gltfindex_to_joitindex_map[i] = replacement_index++;
}
}
}
}
else
{
// Less than 110, just add every valid joint
for (size_t i = 0; i < jointCnt; ++i)
{
// Process joint name and idnex
S32 joint = gltf_skin.mJoints[i];
if (gltf_joint_index_use[i] < 0)
{
// unsupported (-1) joint, drop it
continue;
}
if (addJointToModelSkin(skin_info, skinIdx, i))
{
gltfindex_to_joitindex_map[i] = replacement_index++;
}
}
}
if (skin_info.mInvBindMatrix.size() > mMaxJointsPerMesh)
{
// mMaxJointsPerMesh ususlly is equal to LL_MAX_JOINTS_PER_MESH_OBJECT
// and is 110.
LL_WARNS("GLTF_IMPORT") << "Too many jonts in " << pModel->mLabel
<< " Count: " << (S32)skin_info.mInvBindMatrix.size()
<< " Limit:" << (S32)mMaxJointsPerMesh << LL_ENDL;
LLSD args;
args["Message"] = "ModelTooManyJoints";
args["MODEL_NAME"] = pModel->mLabel;
args["JOINT_COUNT"] = (S32)skin_info.mInvBindMatrix.size();
args["MAX"] = (S32)mMaxJointsPerMesh;
mWarningsArray.append(args);
}
// Remap indices for pModel->mSkinWeights
for (auto& weights : pModel->mSkinWeights)
{
for (auto& weight : weights.second)
{
weight.mJointIdx = gltfindex_to_joitindex_map[weight.mJointIdx];
}
}
}
return true;
}
void LLGLTFLoader::populateJointsFromSkin(S32 skin_idx)
{
const LL::GLTF::Skin& skin = mGLTFAsset.mSkins[skin_idx];
LL_INFOS("GLTF_DEBUG") << "populateJointFromSkin: Processing skin " << skin_idx << " with " << skin.mJoints.size() << " joints" << LL_ENDL;
if (skin.mInverseBindMatrices > 0 && skin.mJoints.size() != skin.mInverseBindMatricesData.size())
{
LL_INFOS("GLTF_IMPORT") << "Bind matrices count mismatch joints count" << LL_ENDL;
LLSD args;
args["Message"] = "InvBindCountMismatch";
mWarningsArray.append(args);
}
S32 joint_count = (S32)skin.mJoints.size();
S32 inverse_count = (S32)skin.mInverseBindMatricesData.size();
if (mInverseBindMatrices.size() <= skin_idx)
{
mInverseBindMatrices.resize(skin_idx + 1);
mAlternateBindMatrices.resize(skin_idx + 1);
mJointNames.resize(skin_idx + 1);
mJointUsage.resize(skin_idx + 1);
mValidJointsCount.resize(skin_idx + 1, 0);
}
// fill up joints related data
joints_data_map_t joints_data;
joints_name_to_node_map_t names_to_nodes;
for (S32 i = 0; i < joint_count; i++)
{
S32 joint = skin.mJoints[i];
const LL::GLTF::Node &jointNode = mGLTFAsset.mNodes[joint];
JointNodeData& data = joints_data[joint];
data.mNodeIdx = joint;
data.mJointListIdx = i;
data.mGltfRestMatrix = buildGltfRestMatrix(joint, skin);
data.mGltfMatrix = jointNode.mMatrix;
data.mOverrideMatrix = glm::mat4(1.f);
if (mJointMap.find(jointNode.mName) != mJointMap.end())
{
data.mName = mJointMap[jointNode.mName];
data.mIsValidViewerJoint = true;
mValidJointsCount[skin_idx]++;
}
else
{
data.mName = jointNode.mName;
data.mIsValidViewerJoint = false;
}
names_to_nodes[data.mName] = joint;
for (S32 child : jointNode.mChildren)
{
JointNodeData& child_data = joints_data[child];
child_data.mParentNodeIdx = joint;
child_data.mIsParentValidViewerJoint = data.mIsValidViewerJoint;
}
}
// Go over viewer joints and build overrides
// This is needed because gltf skeleton doesn't necessarily match viewer's skeleton.
glm::mat4 ident(1.0);
for (auto &viewer_data : mViewerJointData)
{
buildOverrideMatrix(viewer_data, joints_data, names_to_nodes, ident, ident);
}
for (S32 i = 0; i < joint_count; i++)
{
S32 joint = skin.mJoints[i];
const LL::GLTF::Node &jointNode = mGLTFAsset.mNodes[joint];
std::string legal_name(jointNode.mName);
// Viewer supports a limited set of joints, mark them as legal
bool legal_joint = false;
if (mJointMap.find(legal_name) != mJointMap.end())
{
legal_name = mJointMap[legal_name];
legal_joint = true;
mJointNames[skin_idx].push_back(legal_name);
}
else
{
mJointNames[skin_idx].emplace_back();
}
mJointUsage[skin_idx].push_back(0);
// Compute bind matrices
if (!legal_joint)
{
// Add placeholder to not break index.
// Not going to be used by viewer, will be stripped from skin_info.
LLMatrix4 gltf_transform;
gltf_transform.setIdentity();
mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
}
else if (inverse_count > i)
{
// Transalte existing bind matrix to viewer's overriden skeleton
glm::mat4 original_bind_matrix = glm::inverse(skin.mInverseBindMatricesData[i]);
glm::mat4 rotated_original = coord_system_rotation * original_bind_matrix;
glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name);
glm::mat4 tranlated_original = skeleton_transform * rotated_original;
glm::mat4 final_inverse_bind_matrix = glm::inverse(tranlated_original);
LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(final_inverse_bind_matrix));
LL_DEBUGS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Translated val: " << gltf_transform << LL_ENDL;
mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
}
else
{
// If bind matrices aren't present (they are optional in gltf),
// assume an identy matrix
// todo: find a model with this, might need to use YZ rotated matrix
glm::mat4 inv_bind(1.0f);
glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name);
inv_bind = glm::inverse(skeleton_transform * inv_bind);
LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(inv_bind));
LL_DEBUGS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Generated val: " << gltf_transform << LL_ENDL;
mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
}
// Compute Alternative matrices also known as overrides
LLMatrix4 original_joint_transform(glm::value_ptr(joints_data[joint].mOverrideMatrix));
// Viewer seems to care only about translation part,
// but for parity with collada taking original value
LLMatrix4 newInverse = LLMatrix4(mInverseBindMatrices[skin_idx].back().getF32ptr());
newInverse.setTranslation(original_joint_transform.getTranslation());
LL_DEBUGS("GLTF_DEBUG") << "mAlternateBindMatrix name: " << legal_name << " val: " << newInverse << LL_ENDL;
mAlternateBindMatrices[skin_idx].push_back(LLMatrix4a(newInverse));
if (legal_joint)
{
// Might be needed for uploader UI to correctly identify overriden joints
// but going to be incorrect if multiple skins are present
mJointList[legal_name] = newInverse;
mJointsFromNode.push_front(legal_name);
}
}
S32 valid_joints = mValidJointsCount[skin_idx];
if (valid_joints < joint_count)
{
LL_INFOS("GLTF_IMPORT") << "Skin " << skin_idx
<< " defines " << joint_count
<< " joints, but only " << valid_joints
<< " were recognized and are compatible." << LL_ENDL;
LLSD args;
args["Message"] = "SkinUsupportedJoints";
args["SKIN_INDEX"] = skin_idx;
args["JOINT_COUNT"] = joint_count;
args["LEGAL_COUNT"] = valid_joints;
mWarningsArray.append(args);
}
}
void LLGLTFLoader::populateJointGroups()
{
std::string parent;
for (auto& viewer_data : mViewerJointData)
{
buildJointGroup(viewer_data, parent);
}
}
void LLGLTFLoader::buildJointGroup(LLJointData& viewer_data, const std::string &parent_group)
{
JointGroups& jount_group_data = mJointGroups[viewer_data.mName];
jount_group_data.mGroup = viewer_data.mGroup;
jount_group_data.mParentGroup = parent_group;
for (LLJointData& child_data : viewer_data.mChildren)
{
buildJointGroup(child_data, viewer_data.mGroup);
}
}
void LLGLTFLoader::buildOverrideMatrix(LLJointData& viewer_data, joints_data_map_t &gltf_nodes, joints_name_to_node_map_t &names_to_nodes, glm::mat4& parent_rest, glm::mat4& parent_support_rest) const
{
glm::mat4 rest(1.f);
joints_name_to_node_map_t::iterator found_node = names_to_nodes.find(viewer_data.mName);
if (found_node != names_to_nodes.end())
{
S32 gltf_node_idx = found_node->second;
JointNodeData& node = gltf_nodes[gltf_node_idx];
node.mIsOverrideValid = true;
node.mViewerRestMatrix = viewer_data.mRestMatrix;
glm::mat4 gltf_joint_rest_pose = coord_system_rotation * node.mGltfRestMatrix;
if (mApplyXYRotation)
{
gltf_joint_rest_pose = coord_system_rotationxy * gltf_joint_rest_pose;
}
glm::mat4 translated_joint;
// Example:
// Viewer has pelvis->spine1->spine2->torso.
// gltf example model has pelvis->torso
// By doing glm::inverse(transalted_rest_spine2) * gltf_rest_torso
// We get what torso would have looked like if gltf had a spine2
if (viewer_data.mIsJoint)
{
translated_joint = glm::inverse(parent_rest) * gltf_joint_rest_pose;
}
else
{
translated_joint = glm::inverse(parent_support_rest) * gltf_joint_rest_pose;
}
glm::vec3 translation_override;
glm::vec3 skew;
glm::vec3 scale;
glm::vec4 perspective;
glm::quat rotation;
glm::decompose(translated_joint, scale, rotation, translation_override, skew, perspective);
// Viewer allows overrides, which are base joint with applied translation override.
// fortunately normal bones use only translation, without rotation or scale
node.mOverrideMatrix = glm::recompose(glm::vec3(1, 1, 1), glm::identity<glm::quat>(), translation_override, glm::vec3(0, 0, 0), glm::vec4(0, 0, 0, 1));
glm::mat4 overriden_joint = node.mOverrideMatrix;
// todo: if gltf bone had rotation or scale, they probably should be saved here
// then applied to bind matrix
rest = parent_rest * overriden_joint;
if (viewer_data.mIsJoint)
{
node.mOverrideRestMatrix = rest;
}
else
{
// This is likely incomplete or even wrong.
// Viewer Collision bones specify rotation and scale.
// Importer should apply rotation and scale to this matrix and save as needed
// then subsctruct them from bind matrix
// Todo: get models that use collision bones, made by different programs
overriden_joint = glm::scale(overriden_joint, viewer_data.mScale);
node.mOverrideRestMatrix = parent_support_rest * overriden_joint;
}
}
else
{
// No override for this joint
rest = parent_rest * viewer_data.mJointMatrix;
}
glm::mat4 support_rest(1.f);
if (viewer_data.mSupport == LLJointData::SUPPORT_BASE)
{
support_rest = rest;
}
else
{
support_rest = parent_support_rest;
}
for (LLJointData& child_data : viewer_data.mChildren)
{
buildOverrideMatrix(child_data, gltf_nodes, names_to_nodes, rest, support_rest);
}
}
glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const LL::GLTF::Skin& gltf_skin) const
{
// This is inefficient since we are recalculating some joints multiple times over
// Todo: cache it?
if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size()))
{
return glm::mat4(1.0f);
}
const auto& node = mGLTFAsset.mNodes[joint_node_index];
// Find and apply parent transform if it exists
for (size_t i = 0; i < mGLTFAsset.mNodes.size(); ++i)
{
const auto& potential_parent = mGLTFAsset.mNodes[i];
auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), joint_node_index);
if (it != potential_parent.mChildren.end())
{
// Found parent
if (std::find(gltf_skin.mJoints.begin(), gltf_skin.mJoints.end(), joint_node_index) != gltf_skin.mJoints.end())
{
// parent is a joint - recursively combine transform
// assumes that matrix is already valid
return buildGltfRestMatrix(static_cast<S32>(i), gltf_skin) * node.mMatrix;
}
}
}
// Should we return armature or stop earlier?
return node.mMatrix;
}
glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const joints_data_map_t& joint_data) const
{
// This is inefficient since we are recalculating some joints multiple times over
// Todo: cache it?
if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size()))
{
return glm::mat4(1.0f);
}
auto& data = joint_data.at(joint_node_index);
if (data.mParentNodeIdx >=0)
{
return buildGltfRestMatrix(data.mParentNodeIdx, joint_data) * data.mGltfMatrix;
}
// Should we return armature or stop earlier?
return data.mGltfMatrix;
}
// This function computes the transformation matrix needed to convert from GLTF skeleton space
// to viewer skeleton space for a specific joint
glm::mat4 LLGLTFLoader::computeGltfToViewerSkeletonTransform(const joints_data_map_t& joints_data_map, S32 gltf_node_index, const std::string& joint_name) const
{
const JointNodeData& node_data = joints_data_map.at(gltf_node_index);
if (!node_data.mIsOverrideValid)
{
// For now assume they are identical and return an identity (for ease of debuging)
return glm::mat4(1.0f);
}
// Get the GLTF joint's rest pose (in GLTF coordinate system)
const glm::mat4 &gltf_joint_rest_pose = node_data.mGltfRestMatrix;
glm::mat4 rest_pose = coord_system_rotation * gltf_joint_rest_pose;
LL_INFOS("GLTF_DEBUG") << "rest matrix for joint " << joint_name << ": ";
LLMatrix4 transform(glm::value_ptr(rest_pose));
LL_CONT << transform << LL_ENDL;
// Compute transformation from GLTF space to viewer space
// This assumes both skeletons are in rest pose initially
return node_data.mOverrideRestMatrix * glm::inverse(rest_pose);
}
bool LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin, S32 joint_idx, S32 bind_indx)
{
glm::mat4 gltf_joint_rest = buildGltfRestMatrix(joint_idx, gltf_skin);
glm::mat4 test_mat = glm::inverse(gltf_joint_rest) * gltf_skin.mInverseBindMatricesData[bind_indx];
// Normally for shoulders it should be something close to
// {1,0,0,0;0,-1,0,0;0,0,-1,0;0,0,0,1}
// rotated one will look like
// {0,0,0,-1;1,0,0,0;0,-1,0,0;0,0,0,1}
// Todo: This is a cheap hack,
// figure out how rotation is supposed to work
return abs(test_mat[0][0]) < 0.5 && abs(test_mat[1][1]) < 0.5 && abs(test_mat[2][2]) < 0.5;
}
void LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin)
{
// HACK: figure out model's rotation from shoulders' matrix.
// This is wrong on many levels:
// Too limited (only models that have shoulders),
// Will not work well with things that emulate 3 hands in some manner
// Only supports xy 90 degree rotation
// Todo: figure out how to find skeleton's orientation Correctly
// when model is rotated at a triangle level
constexpr char right_shoulder_str[] = "mShoulderRight";
constexpr char left_shoulder_str[] = "mShoulderLeft";
S32 size = (S32)gltf_skin.mJoints.size();
S32 joints_found = 0;
for (S32 i= 0; i < size; i++)
{
S32 joint = gltf_skin.mJoints[i];
const LL::GLTF::Node &joint_node = mGLTFAsset.mNodes[joint];
// todo: we are doing this search thing everywhere,
// just pre-translate every joint
JointMap::iterator found = mJointMap.find(joint_node.mName);
if (found == mJointMap.end())
{
// unsupported joint
continue;
}
if (found->second == right_shoulder_str || found->second == left_shoulder_str)
{
if (checkForXYrotation(gltf_skin, joint, i))
{
joints_found++;
}
else
{
return;
}
}
}
if (joints_found == 2)
{
// Both joints in a weird position/rotation, assume rotated model
mApplyXYRotation = true;
}
}
void LLGLTFLoader::checkGlobalJointUsage()
{
// Check if some joints remained unused
for (S32 skin_idx = 0; skin_idx < (S32)mGLTFAsset.mSkins.size(); ++skin_idx)
{
const LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skin_idx];
S32 joint_count = (S32)gltf_skin.mJoints.size();
S32 used_joints = 0;
for (S32 i = 0; i < joint_count; ++i)
{
S32 joint = gltf_skin.mJoints[i];
if (mJointUsage[skin_idx][i] == 0)
{
// Joint is unused, log it
LL_INFOS("GLTF_DEBUG") << "Joint " << mJointNames[skin_idx][i]
<< " in skin " << skin_idx << " is unused." << LL_ENDL;
}
else
{
used_joints++;
}
}
S32 valid_joints = mValidJointsCount[skin_idx];
if (valid_joints > used_joints)
{
S32 unsed_joints = valid_joints - used_joints;
LL_INFOS("GLTF_IMPORT") << "Skin " << skin_idx
<< " declares " << valid_joints
<< " valid joints, of them " << unsed_joints
<< " remained unused" << LL_ENDL;
LLSD args;
args["Message"] = "SkinUnusedJoints";
args["SKIN_INDEX"] = (S32)skin_idx;
args["JOINT_COUNT"] = valid_joints;
args["USED_COUNT"] = used_joints;
mWarningsArray.append(args);
}
}
}
std::string LLGLTFLoader::extractTextureToTempFile(S32 textureIndex, const std::string& texture_type)
{
if (textureIndex < 0 || textureIndex >= mGLTFAsset.mTextures.size())
return "";
S32 sourceIndex = mGLTFAsset.mTextures[textureIndex].mSource;
if (sourceIndex < 0 || sourceIndex >= mGLTFAsset.mImages.size())
return "";
LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
// Handle URI-based textures
if (!image.mUri.empty())
{
return image.mUri; // Return URI directly
}
// Handle embedded textures
if (image.mBufferView >= 0)
{
if (image.mBufferView < mGLTFAsset.mBufferViews.size())
{
const LL::GLTF::BufferView& buffer_view = mGLTFAsset.mBufferViews[image.mBufferView];
if (buffer_view.mBuffer < mGLTFAsset.mBuffers.size())
{
const LL::GLTF::Buffer& buffer = mGLTFAsset.mBuffers[buffer_view.mBuffer];
if (buffer_view.mByteOffset + buffer_view.mByteLength <= buffer.mData.size())
{
// Extract image data
const U8* data_ptr = &buffer.mData[buffer_view.mByteOffset];
U32 data_size = buffer_view.mByteLength;
// Determine the file extension
std::string extension = ".png"; // Default
if (!image.mMimeType.empty())
{
if (image.mMimeType == "image/jpeg")
extension = ".jpg";
else if (image.mMimeType == "image/png")
extension = ".png";
}
else if (data_size >= 4)
{
if (data_ptr[0] == 0xFF && data_ptr[1] == 0xD8)
extension = ".jpg"; // JPEG magic bytes
else if (data_ptr[0] == 0x89 && data_ptr[1] == 0x50 && data_ptr[2] == 0x4E && data_ptr[3] == 0x47)
extension = ".png"; // PNG magic bytes
}
// Create a temporary file
std::string temp_dir = gDirUtilp->getTempDir();
std::string temp_filename = temp_dir + gDirUtilp->getDirDelimiter() +
"gltf_embedded_" + texture_type + "_" + std::to_string(sourceIndex) + extension;
// Write the image data to the temporary file
std::ofstream temp_file(temp_filename, std::ios::binary);
if (temp_file.is_open())
{
temp_file.write(reinterpret_cast<const char*>(data_ptr), data_size);
temp_file.close();
LL_INFOS("GLTF_IMPORT") << "Extracted embedded " << texture_type << " texture to: " << temp_filename << LL_ENDL;
return temp_filename;
}
else
{
LL_WARNS("GLTF_IMPORT") << "Failed to create temporary file for " << texture_type << " texture: " << temp_filename << LL_ENDL;
LLSD args;
args["Message"] = "FailedToCreateTempFile";
args["TEXTURE_INDEX"] = sourceIndex;
args["TEXTURE_TYPE"] = texture_type;
args["TEMP_FILE"] = temp_filename;
mWarningsArray.append(args);
}
}
}
}
}
return "";
}
void LLGLTFLoader::notifyUnsupportedExtension(bool unsupported)
{
std::vector<std::string> extensions = unsupported ? mGLTFAsset.mUnsupportedExtensions : mGLTFAsset.mIgnoredExtensions;
if (extensions.size() > 0)
{
LLSD args;
args["Message"] = unsupported ? "UnsupportedExtension" : "IgnoredExtension";
std::string del;
std::string ext;
for (auto& extension : extensions)
{
ext += del;
ext += extension;
del = ",";
}
args["EXT"] = ext;
mWarningsArray.append(args);
LL_WARNS("GLTF_IMPORT") << "Model uses unsupported extension: " << ext << LL_ENDL;
}
}
size_t LLGLTFLoader::getSuffixPosition(const std::string &label)
{
if ((label.find("_LOD") != -1) || (label.find("_PHYS") != -1))
{
return label.rfind('_');
}
return -1;
}
std::string LLGLTFLoader::getLodlessLabel(const LL::GLTF::Mesh& mesh)
{
size_t ext_pos = getSuffixPosition(mesh.mName);
if (ext_pos != -1)
{
return mesh.mName.substr(0, ext_pos);
}
return mesh.mName;
}
|