summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class3/deferred/reflectionProbeF.glsl
blob: bd06a680f540f90dc6202ec5c58d00469504369f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/**
 * @file class3/deferred/reflectionProbeF.glsl
 *
 * $LicenseInfo:firstyear=2022&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2022, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#define FLT_MAX 3.402823466e+38

#if defined(SSR)
float tapScreenSpaceReflection(int totalSamples, vec2 tc, vec3 viewPos, vec3 n, inout vec4 collectedColor, sampler2D source);
#endif

#define REFMAP_COUNT 256
#define REF_SAMPLE_COUNT 64 //maximum number of samples to consider

uniform samplerCubeArray   reflectionProbes;
uniform samplerCubeArray   irradianceProbes;
uniform sampler2D sceneMap;
uniform int cube_snapshot;
uniform float max_probe_lod;

layout (std140) uniform ReflectionProbes
{
    // list of OBBs for user override probes
    // box is a set of 3 planes outward facing planes and the depth of the box along that plane
    // for each box refBox[i]...
    /// box[0..2] - plane 0 .. 2 in [A,B,C,D] notation
    //  box[3][0..2] - plane thickness
    mat4 refBox[REFMAP_COUNT];
    // list of bounding spheres for reflection probes sorted by distance to camera (closest first)
    vec4 refSphere[REFMAP_COUNT];
    // extra parameters (currently only .x used for probe ambiance)
    vec4 refParams[REFMAP_COUNT];
    // index  of cube map in reflectionProbes for a corresponding reflection probe
    // e.g. cube map channel of refSphere[2] is stored in refIndex[2]
    // refIndex.x - cubemap channel in reflectionProbes
    // refIndex.y - index in refNeighbor of neighbor list (index is ivec4 index, not int index)
    // refIndex.z - number of neighbors
    // refIndex.w - priority, if negative, this probe has a box influence
    ivec4 refIndex[REFMAP_COUNT];

    // neighbor list data (refSphere indices, not cubemap array layer)
    ivec4 refNeighbor[1024];

    // number of reflection probes present in refSphere
    int refmapCount;
};

// Inputs
uniform mat3 env_mat;

// list of probeIndexes shader will actually use after "getRefIndex" is called
// (stores refIndex/refSphere indices, NOT rerflectionProbes layer)
int probeIndex[REF_SAMPLE_COUNT];

// number of probes stored in probeIndex
int probeInfluences = 0;

bool isAbove(vec3 pos, vec4 plane)
{
    return (dot(plane.xyz, pos) + plane.w) > 0;
}

bool sample_automatic = true;

// return true if probe at index i influences position pos
bool shouldSampleProbe(int i, vec3 pos)
{
    if (refIndex[i].w < 0)
    {
        vec4 v = refBox[i] * vec4(pos, 1.0);
        if (abs(v.x) > 1 || 
            abs(v.y) > 1 ||
            abs(v.z) > 1)
        {
            return false;
        }

        sample_automatic = false;
    }
    else
    {
        if (refIndex[i].w == 0 && !sample_automatic)
        {
            return false;
        }

        vec3 delta = pos.xyz - refSphere[i].xyz;
        float d = dot(delta, delta);
        float r2 = refSphere[i].w;
        r2 *= r2;

        if (d > r2)
        { // outside bounding sphere
            return false;
        }
    }

    return true;
}

// call before sampleRef
// populate "probeIndex" with N probe indices that influence pos where N is REF_SAMPLE_COUNT
void preProbeSample(vec3 pos)
{
    // TODO: make some sort of structure that reduces the number of distance checks
    for (int i = 1; i < refmapCount; ++i)
    {
        // found an influencing probe
        if (shouldSampleProbe(i, pos))
        {
            probeIndex[probeInfluences] = i;
            ++probeInfluences;

            int neighborIdx = refIndex[i].y;
            if (neighborIdx != -1)
            {
                int neighborCount = min(refIndex[i].z, REF_SAMPLE_COUNT-1);

                int count = 0;
                while (count < neighborCount)
                {
                    // check up to REF_SAMPLE_COUNT-1 neighbors (neighborIdx is ivec4 index)

                    int idx = refNeighbor[neighborIdx].x;
                    if (shouldSampleProbe(idx, pos))
                    {
                        probeIndex[probeInfluences++] = idx;
                        if (probeInfluences == REF_SAMPLE_COUNT)
                        {
                            break;
                        }
                    }
                    count++;
                    if (count == neighborCount)
                    {
                        break;
                    }

                    idx = refNeighbor[neighborIdx].y;
                    if (shouldSampleProbe(idx, pos))
                    {
                        probeIndex[probeInfluences++] = idx;
                        if (probeInfluences == REF_SAMPLE_COUNT)
                        {
                            break;
                        }
                    }
                    count++;
                    if (count == neighborCount)
                    {
                        break;
                    }

                    idx = refNeighbor[neighborIdx].z;
                    if (shouldSampleProbe(idx, pos))
                    {
                        probeIndex[probeInfluences++] = idx;
                        if (probeInfluences == REF_SAMPLE_COUNT)
                        {
                            break;
                        }
                    }
                    count++;
                    if (count == neighborCount)
                    {
                        break;
                    }

                    idx = refNeighbor[neighborIdx].w;
                    if (shouldSampleProbe(idx, pos))
                    {
                        probeIndex[probeInfluences++] = idx;
                        if (probeInfluences == REF_SAMPLE_COUNT)
                        {
                            break;
                        }
                    }
                    count++;
                    if (count == neighborCount)
                    {
                        break;
                    }

                    ++neighborIdx;
                }

                break;
            }
        }
    }

    if (sample_automatic)
    { // probe at index 0 is a special probe for smoothing out automatic probes
        probeIndex[probeInfluences++] = 0;
    }
}

// from https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection

// original reference implementation:
/*
bool intersect(const Ray &ray) const 
{ 
        float t0, t1; // solutions for t if the ray intersects 
#if 0 
        // geometric solution
        Vec3f L = center - orig; 
        float tca = L.dotProduct(dir); 
        // if (tca < 0) return false;
        float d2 = L.dotProduct(L) - tca * tca; 
        if (d2 > radius2) return false; 
        float thc = sqrt(radius2 - d2); 
        t0 = tca - thc; 
        t1 = tca + thc; 
#else 
        // analytic solution
        Vec3f L = orig - center; 
        float a = dir.dotProduct(dir); 
        float b = 2 * dir.dotProduct(L); 
        float c = L.dotProduct(L) - radius2; 
        if (!solveQuadratic(a, b, c, t0, t1)) return false; 
#endif 
        if (t0 > t1) std::swap(t0, t1); 
 
        if (t0 < 0) { 
            t0 = t1; // if t0 is negative, let's use t1 instead 
            if (t0 < 0) return false; // both t0 and t1 are negative 
        } 
 
        t = t0; 
 
        return true; 
} */

// adapted -- assume that origin is inside sphere, return intersection of ray with edge of sphere
vec3 sphereIntersect(vec3 origin, vec3 dir, vec3 center, float radius2)
{ 
        float t0, t1; // solutions for t if the ray intersects 

        vec3 L = center - origin; 
        float tca = dot(L,dir);

        float d2 = dot(L,L) - tca * tca; 

        float thc = sqrt(radius2 - d2); 
        t0 = tca - thc; 
        t1 = tca + thc; 
 
        vec3 v = origin + dir * t1;
        return v; 
} 

void swap(inout float a, inout float b)
{
    float t = a;
    a = b;
    b = a;
}

// debug implementation, make no assumptions about origin
void sphereIntersectDebug(vec3 origin, vec3 dir, vec3 center, float radius2, float depth, inout vec4 col)
{
    float t[2]; // solutions for t if the ray intersects 

    // geometric solution
    vec3 L = center - origin; 
    float tca = dot(L, dir);
    // if (tca < 0) return false;
    float d2 = dot(L, L) - tca * tca; 
    if (d2 > radius2) return; 
    float thc = sqrt(radius2 - d2); 
    t[0] = tca - thc; 
    t[1] = tca + thc; 

    for (int i = 0; i < 2; ++i)
    {
        if (t[i] > 0)
        {
            if (t[i] > depth)
            {
                float w = 0.125/((t[i]-depth)*0.125 + 1.0);
                col += vec4(0, 0, w, w)*(1.0-min(col.a, 1.0));
            }
            else
            {
                float w = 0.25;
                col += vec4(w,w,0,w)*(1.0-min(col.a, 1.0));
            }
        }
    }

}

// from https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
/*
vec3 DirectionWS = normalize(PositionWS - CameraWS);
vec3 ReflDirectionWS = reflect(DirectionWS, NormalWS);

// Intersection with OBB convertto unit box space
// Transform in local unit parallax cube space (scaled and rotated)
vec3 RayLS = MulMatrix( float(3x3)WorldToLocal, ReflDirectionWS);
vec3 PositionLS = MulMatrix( WorldToLocal, PositionWS);

vec3 Unitary = vec3(1.0f, 1.0f, 1.0f);
vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS;
vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS;
vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect);
float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z));

// Use Distance in WS directly to recover intersection
vec3 IntersectPositionWS = PositionWS + ReflDirectionWS * Distance;
vec3 ReflDirectionWS = IntersectPositionWS - CubemapPositionWS;

return texCUBE(envMap, ReflDirectionWS);
*/

// get point of intersection with given probe's box influence volume
// origin - ray origin in clip space
// dir - ray direction in clip space
// i - probe index in refBox/refSphere
// d - distance to nearest wall in clip space
vec3 boxIntersect(vec3 origin, vec3 dir, int i, out float d)
{
    // Intersection with OBB convert to unit box space
    // Transform in local unit parallax cube space (scaled and rotated)
    mat4 clipToLocal = refBox[i];

    vec3 RayLS = mat3(clipToLocal) * dir;
    vec3 PositionLS = (clipToLocal * vec4(origin, 1.0)).xyz;

    d = 1.0-max(max(abs(PositionLS.x), abs(PositionLS.y)), abs(PositionLS.z));

    vec3 Unitary = vec3(1.0f, 1.0f, 1.0f);
    vec3 FirstPlaneIntersect  = (Unitary - PositionLS) / RayLS;
    vec3 SecondPlaneIntersect = (-Unitary - PositionLS) / RayLS;
    vec3 FurthestPlane = max(FirstPlaneIntersect, SecondPlaneIntersect);
    float Distance = min(FurthestPlane.x, min(FurthestPlane.y, FurthestPlane.z));

    // Use Distance in CS directly to recover intersection
    vec3 IntersectPositionCS = origin + dir * Distance;

    return IntersectPositionCS;
}

void debugBoxCol(vec3 ro, vec3 rd, float t, vec3 p, inout vec4 col)
{
    vec3 v = ro + rd * t;

    v -= ro;
    vec3 pos = p - ro;


    bool behind = dot(v,v) > dot(pos,pos);

    float w = 0.25;
   
    if (behind) 
    {
        w *= 0.5;
        w /= (length(v)-length(pos))*0.5+1.0;
        col += vec4(0,0,w,w)*(1.0-min(col.a, 1.0));
    }
    else
    {
        col += vec4(w,w,0,w)*(1.0-min(col.a, 1.0));
    }
}

// cribbed from https://iquilezles.org/articles/intersectors/
// axis aligned box centered at the origin, with size boxSize
void boxIntersectionDebug( in vec3 ro, in vec3 p, vec3 boxSize, inout vec4 col) 
{
    vec3 rd = normalize(p-ro);

    vec3 m = 1.0/rd; // can precompute if traversing a set of aligned boxes
    vec3 n = m*ro;   // can precompute if traversing a set of aligned boxes
    vec3 k = abs(m)*boxSize;
    vec3 t1 = -n - k;
    vec3 t2 = -n + k;
    float tN = max( max( t1.x, t1.y ), t1.z );
    float tF = min( min( t2.x, t2.y ), t2.z );
    if( tN>tF || tF<0.0) return ; // no intersection

    float t = tN < 0 ? tF : tN;

    debugBoxCol(ro, rd, t, p, col);

    if (tN > 0) // eye is outside box, check backside, too
    {
        debugBoxCol(ro, rd, tF, p, col);
    }
}


void boxIntersectDebug(vec3 origin, vec3 pos, int i, inout vec4 col)
{
    mat4 clipToLocal = refBox[i];
    
    // transform into unit cube space
    origin = (clipToLocal * vec4(origin, 1.0)).xyz;
    pos = (clipToLocal * vec4(pos, 1.0)).xyz;

    boxIntersectionDebug(origin, pos, vec3(1), col);
}


// get the weight of a sphere probe
//  pos - position to be weighted
//  dir - normal to be weighted
//  origin - center of sphere probe
//  r - radius of probe influence volume
// min_da - minimum angular attenuation coefficient
// i - index of probe in refSphere
// dw - distance weight
float sphereWeight(vec3 pos, vec3 dir, vec3 origin, float r, float min_da, int i, out float dw)
{
    float r1 = r * 0.5; // 50% of radius (outer sphere to start interpolating down)
    vec3 delta = pos.xyz - origin;
    float d2 = max(length(delta), 0.001);

    float r2 = r1; //r1 * r1;

    //float atten = 1.0 - max(d2 - r2, 0.0) / max((rr - r2), 0.001);
    float atten = 1.0 - max(d2 - r2, 0.0) / max((r - r2), 0.001);
    float w = 1.0 / d2;
    
    dw = w * atten * max(r, 1.0)*4;

    atten *= max(dot(normalize(-delta), dir), min_da);

    w *= atten;

    return w;
}

// Tap a reflection probe
// pos - position of pixel
// dir - pixel normal
//  w - weight of sample (distance and angular attenuation)
//  dw - weight of sample (distance only)
// lod - which mip to sample (lower is higher res, sharper reflections)
// c - center of probe
// r2 - radius of probe squared
// i - index of probe 
vec3 tapRefMap(vec3 pos, vec3 dir, out float w, out float dw, float lod, vec3 c, int i)
{
    // parallax adjustment
    vec3 v;

    if (refIndex[i].w < 0)
    {  // box probe
        float d = 0;
        v = boxIntersect(pos, dir, i, d);

        w = max(d, 0.001);
    }
    else
    { // sphere probe
        float r = refSphere[i].w;

        float rr = r * r;

        v = sphereIntersect(pos, dir, c, 
        refIndex[i].w < 1 ? 4096.0*4096.0 : // <== effectively disable parallax correction for automatically placed probes to keep from bombing the world with obvious spheres
                rr);

        w = sphereWeight(pos, dir, refSphere[i].xyz, r, 0.25, i, dw);
    }

    v -= c;
    vec3 d = normalize(v);

    v = env_mat * v;
    
    vec4 ret = textureLod(reflectionProbes, vec4(v.xyz, refIndex[i].x), lod) * refParams[i].y;

    return ret.rgb;
}

// Tap an irradiance map
// pos - position of pixel
// dir - pixel normal
// w - weight of sample (distance and angular attenuation)
// dw - weight of sample (distance only)
// i - index of probe 
vec3 tapIrradianceMap(vec3 pos, vec3 dir, out float w, out float dw, vec3 c, int i)
{
    // parallax adjustment
    vec3 v;
    if (refIndex[i].w < 0)
    {
        float d = 0.0;
        v = boxIntersect(pos, dir, i, d);
        w = max(d, 0.001);
    }
    else
    {
        float r = refSphere[i].w; // radius of sphere volume

        // pad sphere for manual probe extending into automatic probe space
        float rr = r * r;

        v = sphereIntersect(pos, dir, c, 
        refIndex[i].w < 1 ? 4096.0*4096.0 : // <== effectively disable parallax correction for automatically placed probes to keep from bombing the world with obvious spheres
                rr);

        w = sphereWeight(pos, dir, refSphere[i].xyz, r, 0.001, i, dw);
    }

    v -= c;
    v = env_mat * v;
    {
        return textureLod(irradianceProbes, vec4(v.xyz, refIndex[i].x), 0).rgb * refParams[i].x;
    }
}

vec3 sampleProbes(vec3 pos, vec3 dir, float lod)
{
    float wsum[2];
    wsum[0] = 0;
    wsum[1] = 0;

    float dwsum[2];
    dwsum[0] = 0;
    dwsum[1] = 0;

    vec3 col[2];
    col[0] = vec3(0);
    col[1] = vec3(0);

    for (int idx = 0; idx < probeInfluences; ++idx)
    {
        int i = probeIndex[idx];
        int p = clamp(abs(refIndex[i].w), 0, 1);

        if (p == 0 && !sample_automatic)
        {
            continue;
        }

        float w = 0;
        float dw = 0;
        vec3 refcol;

        
        {
            refcol = tapRefMap(pos, dir, w, dw, lod, refSphere[i].xyz, i);

            col[p] += refcol.rgb*w;
            wsum[p] += w;
            dwsum[p] += dw;
        }
    }

    // mix automatic and manual probes
    if (sample_automatic && wsum[0] > 0.0)
    { // some automatic probes were sampled
        col[0] *= 1.0/wsum[0];
        if (wsum[1] > 0.0)
        { //some manual probes were sampled, mix between the two
            col[1] *= 1.0/wsum[1];
            col[1] = mix(col[0], col[1], min(dwsum[1], 1.0));
            col[0] = vec3(0);
        }
    }
    else if (wsum[1] > 0.0)
    {
        // manual probes were sampled but no automatic probes were
        col[1] *= 1.0/wsum[1];
        col[0] = vec3(0);
    }
    
    return col[1]+col[0];
}

vec3 sampleProbeAmbient(vec3 pos, vec3 dir)
{
    // modified copy/paste of sampleProbes follows, will likely diverge from sampleProbes further
    // as irradiance map mixing is tuned independently of radiance map mixing
    float wsum[2];
    wsum[0] = 0;
    wsum[1] = 0;

    float dwsum[2];
    dwsum[0] = 0;
    dwsum[1] = 0;

    vec3 col[2];
    col[0] = vec3(0);
    col[1] = vec3(0);

    for (int idx = 0; idx < probeInfluences; ++idx)
    {
        int i = probeIndex[idx];
        int p = clamp(abs(refIndex[i].w), 0, 1);

        if (p == 0 && !sample_automatic)
        {
            continue;
        }
        
        {
            float w = 0;
            float dw = 0;

            vec3 refcol = tapIrradianceMap(pos, dir, w, dw, refSphere[i].xyz, i);

            col[p] += refcol*w;
            wsum[p] += w;
            dwsum[p] += dw;
        }
    }

    // mix automatic and manual probes
    if (sample_automatic && wsum[0] > 0.0)
    { // some automatic probes were sampled
        col[0] *= 1.0/wsum[0];
        if (wsum[1] > 0.0)
        { //some manual probes were sampled, mix between the two
            col[1] *= 1.0/wsum[1];
            col[1] = mix(col[0], col[1], min(dwsum[1], 1.0));
            col[0] = vec3(0);
        }
    }
    else if (wsum[1] > 0.0)
    {
        // manual probes were sampled but no automatic probes were
        col[1] *= 1.0/wsum[1];
        col[0] = vec3(0);
    }
    
    return col[1]+col[0];
}

void sampleReflectionProbes(inout vec3 ambenv, inout vec3 glossenv,
        vec2 tc, vec3 pos, vec3 norm, float glossiness)
{
    // TODO - don't hard code lods
    float reflection_lods = max_probe_lod;
    preProbeSample(pos);

    vec3 refnormpersp = reflect(pos.xyz, norm.xyz);

    ambenv = sampleProbeAmbient(pos, norm);

    float lod = (1.0-glossiness)*reflection_lods;
    glossenv = sampleProbes(pos, normalize(refnormpersp), lod);

#if defined(SSR)
    if (cube_snapshot != 1 && glossiness >= 0.9)
    {
        vec4 ssr = vec4(0);
        float w = tapScreenSpaceReflection(1, tc, pos, norm, ssr, sceneMap);

        glossenv = mix(glossenv, ssr.rgb, w);
    }
#endif
}

void sampleReflectionProbesWater(inout vec3 ambenv, inout vec3 glossenv,
        vec2 tc, vec3 pos, vec3 norm, float glossiness)
{
    sampleReflectionProbes(ambenv, glossenv, tc, pos, norm, glossiness);

    // fudge factor to get PBR water at a similar luminance ot legacy water
    glossenv *= 0.25;
}

void debugTapRefMap(vec3 pos, vec3 dir, float depth, int i, inout vec4 col)
{
    vec3 origin = vec3(0,0,0);

    bool manual_probe = abs(refIndex[i].w) > 0;

    if (manual_probe)
    {
        if (refIndex[i].w < 0)
        {
            boxIntersectDebug(origin, pos, i, col);
        }
        else
        {
            float r = refSphere[i].w; // radius of sphere volume
            float rr = r * r; // radius squared

            float t = 0.0;

            sphereIntersectDebug(origin, dir, refSphere[i].xyz, rr, depth, col);
        }
    }
}

vec4 sampleReflectionProbesDebug(vec3 pos)
{
    vec4 col = vec4(0,0,0,0);

    vec3 dir = normalize(pos);

    float d = length(pos);

    for (int i = 1; i < refmapCount; ++i)
    {
        debugTapRefMap(pos, dir, d, i, col);
    }

    return col;
}

void sampleReflectionProbesLegacy(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyenv,
        vec2 tc, vec3 pos, vec3 norm, float glossiness, float envIntensity)
{
    float reflection_lods = max_probe_lod;
    preProbeSample(pos);

    vec3 refnormpersp = reflect(pos.xyz, norm.xyz);

    ambenv = sampleProbeAmbient(pos, norm);
    
    if (glossiness > 0.0)
    {
        float lod = (1.0-glossiness)*reflection_lods;
        glossenv = sampleProbes(pos, normalize(refnormpersp), lod);
    }
    
    if (envIntensity > 0.0)
    {
        legacyenv = sampleProbes(pos, normalize(refnormpersp), 0.0);
    }

#if defined(SSR)
    if (cube_snapshot != 1)
    {
        vec4 ssr = vec4(0);
        float w = tapScreenSpaceReflection(1, tc, pos, norm, ssr, sceneMap);

        glossenv = mix(glossenv, ssr.rgb, w);
        legacyenv = mix(legacyenv, ssr.rgb, w);
    }
#endif
}

void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm)
{
    glossenv *= 0.5; // fudge darker
    float fresnel = clamp(1.0+dot(normalize(pos.xyz), norm.xyz), 0.3, 1.0);
    fresnel *= fresnel;
    fresnel *= spec.a;
    glossenv *= spec.rgb*fresnel;
    glossenv *= vec3(1.0) - color; // fake energy conservation
    color.rgb += glossenv*0.5;
}

 void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity)
 {
    vec3 reflected_color = legacyenv;
    vec3 lookAt = normalize(pos);
    float fresnel = 1.0+dot(lookAt, norm.xyz);
    fresnel *= fresnel;
    fresnel = min(fresnel+envIntensity, 1.0);
    reflected_color *= (envIntensity*fresnel);
    color = mix(color.rgb, reflected_color*0.5, envIntensity);
 }