1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
/**
* @file materialF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
/*[EXTRA_CODE_HERE]*/
//class1/deferred/materialF.glsl
// This shader is used for both writing opaque/masked content to the gbuffer and writing blended content to the framebuffer during the alpha pass.
#define DIFFUSE_ALPHA_MODE_NONE 0
#define DIFFUSE_ALPHA_MODE_BLEND 1
#define DIFFUSE_ALPHA_MODE_MASK 2
#define DIFFUSE_ALPHA_MODE_EMISSIVE 3
uniform float emissive_brightness; // fullbright flag, 1.0 == fullbright, 0.0 otherwise
uniform int sun_up_factor;
vec4 applySkyAndWaterFog(vec3 pos, vec3 additive, vec3 atten, vec4 color);
vec3 scaleSoftClipFragLinear(vec3 l);
void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive);
void calcHalfVectors(vec3 lv, vec3 n, vec3 v, out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist);
vec3 srgb_to_linear(vec3 cs);
vec3 linear_to_srgb(vec3 cs);
uniform mat4 modelview_matrix;
uniform mat3 normal_matrix;
in vec3 vary_position;
void mirrorClip(vec3 pos);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
out vec4 frag_color;
#ifdef HAS_SUN_SHADOW
float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen);
#endif
void sampleReflectionProbesLegacy(out vec3 ambenv, out vec3 glossenv, out vec3 legacyenv,
vec2 tc, vec3 pos, vec3 norm, float glossiness, float envIntensity, bool transparent, vec3 amblit_linear);
void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm);
void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity);
uniform samplerCube environmentMap;
uniform sampler2D lightFunc;
// Inputs
uniform vec4 morphFactor;
uniform vec3 camPosLocal;
uniform mat3 env_mat;
uniform float is_mirror;
uniform vec3 sun_dir;
uniform vec3 moon_dir;
uniform mat4 proj_mat;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform vec4 light_position[8];
uniform vec3 light_direction[8];
uniform vec4 light_attenuation[8];
uniform vec3 light_diffuse[8];
float getAmbientClamp();
void waterClip(vec3 pos);
vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance)
{
// SL-14895 inverted attenuation work-around
// This routine is tweaked to match deferred lighting, but previously used an inverted la value. To reconstruct
// that previous value now that the inversion is corrected, we reverse the calculations in LLPipeline::setupHWLights()
// to recover the `adjusted_radius` value previously being sent as la.
float falloff_factor = (12.0 * fa) - 9.0;
float inverted_la = falloff_factor / la;
// Yes, it makes me want to cry as well. DJH
vec3 col = vec3(0);
//get light vector
vec3 lv = lp.xyz - v;
//get distance
float dist = length(lv);
float da = 1.0;
dist /= inverted_la;
if (dist > 0.0 && inverted_la > 0.0)
{
//normalize light vector
lv = normalize(lv);
//distance attenuation
float dist_atten = clamp(1.0 - (dist - 1.0*(1.0 - fa)) / fa, 0.0, 1.0);
dist_atten *= dist_atten;
dist_atten *= 2.0f;
if (dist_atten <= 0.0)
{
return col;
}
// spotlight coefficient.
float spot = max(dot(-ln, lv), is_pointlight);
da *= spot*spot; // GL_SPOT_EXPONENT=2
//angular attenuation
da *= dot(n, lv);
float lit = 0.0f;
float amb_da = ambiance;
if (da >= 0)
{
lit = max(da * dist_atten, 0.0);
col = lit * light_col * diffuse;
amb_da += (da*0.5 + 0.5) * ambiance;
}
amb_da += (da*da*0.5 + 0.5) * ambiance;
amb_da *= dist_atten;
amb_da = min(amb_da, 1.0f - lit);
// SL-10969 need to see why these are blown out
//col.rgb += amb_da * light_col * diffuse;
if (spec.a > 0.0)
{
//vec3 ref = dot(pos+lv, norm);
vec3 h = normalize(lv + npos);
float nh = dot(n, h);
float nv = dot(n, npos);
float vh = dot(npos, h);
float sa = nh;
float fres = pow(1 - dot(h, npos), 5)*0.4 + 0.5;
float gtdenom = 2 * nh;
float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh));
if (nh > 0.0)
{
float scol = fres*texture(lightFunc, vec2(nh, spec.a)).r*gt / (nh*da);
vec3 speccol = lit*scol*light_col.rgb*spec.rgb;
speccol = clamp(speccol, vec3(0), vec3(1));
col += speccol;
float cur_glare = max(speccol.r, speccol.g);
cur_glare = max(cur_glare, speccol.b);
glare = max(glare, speccol.r);
glare += max(cur_glare, 0.0);
}
}
}
return max(col, vec3(0.0, 0.0, 0.0));
}
#else
out vec4 frag_data[4];
#endif
uniform sampler2D diffuseMap; //always in sRGB space
#ifdef HAS_NORMAL_MAP
uniform sampler2D bumpMap;
#endif
#ifdef HAS_SPECULAR_MAP
uniform sampler2D specularMap;
in vec2 vary_texcoord2;
#endif
uniform float env_intensity;
uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
uniform float minimum_alpha;
#endif
#ifdef HAS_NORMAL_MAP
in vec3 vary_normal;
in vec3 vary_tangent;
flat in float vary_sign;
in vec2 vary_texcoord1;
#else
in vec3 vary_normal;
#endif
in vec4 vertex_color;
in vec2 vary_texcoord0;
// get the transformed normal and apply glossiness component from normal map
vec3 getNormal(inout float glossiness)
{
#ifdef HAS_NORMAL_MAP
vec4 vNt = texture(bumpMap, vary_texcoord1.xy);
glossiness *= vNt.a;
vNt.xyz = vNt.xyz * 2 - 1;
float sign = vary_sign;
vec3 vN = vary_normal;
vec3 vT = vary_tangent.xyz;
vec3 vB = sign * cross(vN, vT);
vec3 tnorm = normalize( vNt.x * vT + vNt.y * vB + vNt.z * vN );
return tnorm;
#else
return normalize(vary_normal);
#endif
}
vec4 getSpecular()
{
#ifdef HAS_SPECULAR_MAP
vec4 spec = texture(specularMap, vary_texcoord2.xy);
spec.rgb *= specular_color.rgb;
#else
vec4 spec = vec4(specular_color.rgb, 1.0);
#endif
return spec;
}
void alphaMask(float alpha)
{
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
// Comparing floats cast from 8-bit values, produces acne right at the 8-bit transition points
float bias = 0.001953125; // 1/512, or half an 8-bit quantization
if (alpha < minimum_alpha-bias)
{
discard;
}
#endif
}
void waterClip()
{
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
waterClip(vary_position.xyz);
#endif
}
float getEmissive(vec4 diffcol)
{
#if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE)
return emissive_brightness;
#else
return max(diffcol.a, emissive_brightness);
#endif
}
float getShadow(vec3 pos, vec3 norm)
{
#ifdef HAS_SUN_SHADOW
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
return sampleDirectionalShadow(pos, norm, vary_texcoord0.xy);
#else
return 1.;
#endif
#else
return 1.;
#endif
}
void main()
{
mirrorClip(vary_position);
waterClip();
// diffcol == diffuse map combined with vertex color
vec4 diffcol = texture(diffuseMap, vary_texcoord0.xy);
diffcol.rgb *= vertex_color.rgb;
alphaMask(diffcol.a);
// spec == specular map combined with specular color
vec4 spec = getSpecular();
float env = env_intensity * spec.a;
float glossiness = specular_color.a;
vec3 norm = getNormal(glossiness);
float emissive = getEmissive(diffcol);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
//forward rendering, output lit linear color
diffcol.rgb = srgb_to_linear(diffcol.rgb);
spec.rgb = srgb_to_linear(spec.rgb);
spec.a = glossiness; // pack glossiness into spec alpha for lighting functions
vec3 pos = vary_position;
float shadow = getShadow(pos, norm);
vec4 diffuse = diffcol;
vec3 color = vec3(0,0,0);
vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir;
float bloom = 0.0;
vec3 sunlit;
vec3 amblit;
vec3 additive;
vec3 atten;
calcAtmosphericVarsLinear(pos.xyz, norm.xyz, light_dir, sunlit, amblit, additive, atten);
vec3 sunlit_linear = srgb_to_linear(sunlit);
vec3 amblit_linear = amblit;
vec3 ambenv;
vec3 glossenv;
vec3 legacyenv;
sampleReflectionProbesLegacy(ambenv, glossenv, legacyenv, pos.xy*0.5+0.5, pos.xyz, norm.xyz, glossiness, env, true, amblit_linear);
color = ambenv;
float da = clamp(dot(norm.xyz, light_dir.xyz), 0.0, 1.0);
vec3 sun_contrib = min(da, shadow) * sunlit_linear;
color.rgb += sun_contrib;
color *= diffcol.rgb;
vec3 refnormpersp = reflect(pos.xyz, norm.xyz);
float glare = 0.0;
if (glossiness > 0.0)
{
vec3 lv = light_dir.xyz;
vec3 h, l, v = -normalize(pos.xyz);
float nh, nl, nv, vh, lightDist;
vec3 n = norm.xyz;
calcHalfVectors(lv, n, v, h, l, nh, nl, nv, vh, lightDist);
if (nl > 0.0 && nh > 0.0)
{
float lit = min(nl*6.0, 1.0);
float sa = nh;
float fres = pow(1 - vh, 5) * 0.4+0.5;
float gtdenom = 2 * nh;
float gt = max(0,(min(gtdenom * nv / vh, gtdenom * nl / vh)));
float scol = shadow*fres*texture(lightFunc, vec2(nh, glossiness)).r*gt/(nh*nl);
color.rgb += lit*scol*sunlit_linear.rgb*spec.rgb;
}
// add radiance map
applyGlossEnv(color, glossenv, spec, pos.xyz, norm.xyz);
}
color = mix(color.rgb, diffcol.rgb, emissive);
if (env > 0.0)
{ // add environmentmap
applyLegacyEnv(color, legacyenv, spec, pos.xyz, norm.xyz, env);
float cur_glare = max(max(legacyenv.r, legacyenv.g), legacyenv.b);
cur_glare = clamp(cur_glare, 0, 1);
cur_glare *= env;
glare += cur_glare;
}
vec3 npos = normalize(-pos.xyz);
vec3 light = vec3(0, 0, 0);
#define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, spec, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w );
LIGHT_LOOP(1)
LIGHT_LOOP(2)
LIGHT_LOOP(3)
LIGHT_LOOP(4)
LIGHT_LOOP(5)
LIGHT_LOOP(6)
LIGHT_LOOP(7)
color += light;
color.rgb = applySkyAndWaterFog(pos.xyz, additive, atten, vec4(color, 1.0)).rgb;
glare *= 1.0-emissive;
glare = min(glare, 1.0);
float al = max(diffcol.a, glare) * vertex_color.a;
frag_color = max(vec4(color, al), vec4(0));
#else // mode is not DIFFUSE_ALPHA_MODE_BLEND, encode to gbuffer
// deferred path // See: C++: addDeferredAttachment(), shader: softenLightF.glsl
float flag = GBUFFER_FLAG_HAS_ATMOS;
frag_data[0] = max(vec4(diffcol.rgb, emissive), vec4(0)); // gbuffer is sRGB for legacy materials
frag_data[1] = max(vec4(spec.rgb, glossiness), vec4(0)); // XYZ = Specular color. W = Specular exponent.
frag_data[2] = vec4(norm, flag); // XY = Normal. Z = Env. intensity. W = 1 skip atmos (mask off fog)
frag_data[3] = vec4(env, 0, 0, 0);
#endif
}
|