summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class3/deferred/cloudsF.glsl
blob: f8373215f098f2a51e36e9f072e386a7b39e09fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/** 
 * @file class3/deferred/cloudsF.glsl
 *
 * $LicenseInfo:firstyear=2005&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2005, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */
 
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_data[3];
#else
#define frag_data gl_FragData
#endif

/////////////////////////////////////////////////////////////////////////
// The fragment shader for the sky
/////////////////////////////////////////////////////////////////////////

VARYING vec4 vary_CloudColorSun;
VARYING vec4 vary_CloudColorAmbient;
VARYING float vary_CloudDensity;
VARYING vec2 vary_texcoord0;
VARYING vec2 vary_texcoord1;
VARYING vec2 vary_texcoord2;
VARYING vec2 vary_texcoord3;
VARYING vec3 vary_pos;

uniform sampler2D cloud_noise_texture;
uniform sampler2D cloud_noise_texture_next;
uniform float blend_factor;
uniform vec4 cloud_pos_density1;
uniform vec4 cloud_pos_density2;
uniform vec4 sunlight_color;
uniform vec4 cloud_color;
uniform float cloud_shadow;
uniform float cloud_scale;
uniform float cloud_variance;
uniform vec3 ambient;
uniform vec3 camPosLocal;
uniform vec3 sun_dir;
uniform float sun_size;
uniform float far_z;

uniform sampler2D transmittance_texture;
uniform sampler3D scattering_texture;
uniform sampler3D single_mie_scattering_texture;
uniform sampler2D irradiance_texture;
uniform sampler2D sh_input_r;
uniform sampler2D sh_input_g;
uniform sampler2D sh_input_b;

vec3 GetSkyLuminance(vec3 camPos, vec3 view_dir, float shadow_length, vec3 dir, out vec3 transmittance);

/// Soft clips the light with a gamma correction
vec3 scaleSoftClip(vec3 light);

vec4 cloudNoise(vec2 uv)
{
   vec4 a = texture2D(cloud_noise_texture, uv);
   vec4 b = texture2D(cloud_noise_texture_next, uv);
   vec4 cloud_noise_sample = mix(a, b, blend_factor);
   return cloud_noise_sample;
}

void main()
{
	// Set variables
	vec2 uv1 = vary_texcoord0.xy;
	vec2 uv2 = vary_texcoord1.xy;
	vec2 uv3 = vary_texcoord2.xy;
	float cloudDensity = 2.0 * (cloud_shadow - 0.25);

	vec2 uv4 = vary_texcoord3.xy;

    vec2 disturbance = vec2(cloudNoise(uv1 / 16.0f).x, cloudNoise((uv3 + uv1) / 16.0f).x) * cloud_variance * (1.0f - cloud_scale * 0.25f);

	// Offset texture coords
	uv1 += cloud_pos_density1.xy + disturbance;	//large texture, visible density
	uv2 += cloud_pos_density1.xy;	//large texture, self shadow
	uv3 += cloud_pos_density2.xy + disturbance;	//small texture, visible density
	uv4 += cloud_pos_density2.xy;	//small texture, self shadow

    float density_variance = min(1.0, (disturbance.x* 2.0 + disturbance.y* 2.0));

    cloudDensity *= 1.0 - (density_variance * density_variance);

	// Compute alpha1, the main cloud opacity
	float alpha1 = (cloudNoise(uv1).x - 0.5) + (cloudNoise(uv3).x - 0.5) * cloud_pos_density2.z;
	alpha1 = min(max(alpha1 + cloudDensity, 0.) * 10 * cloud_pos_density1.z, 1.);

	// And smooth
	alpha1 = 1. - alpha1 * alpha1;
	alpha1 = 1. - alpha1 * alpha1;	

    if (alpha1 < 0.001f)
    {
        discard;
    }

	// Compute alpha2, for self shadowing effect
	// (1 - alpha2) will later be used as percentage of incoming sunlight
	float alpha2 = (cloudNoise(uv2).x - 0.5);
	alpha2 = min(max(alpha2 + cloudDensity, 0.) * 2.5 * cloud_pos_density1.z, 1.);

	// And smooth
	alpha2 = 1. - alpha2;
	alpha2 = 1. - alpha2 * alpha2;	

    vec3 view_ray = vary_pos.xyz + camPosLocal;

    vec3 view_direction = normalize(view_ray);
    vec3 sun_direction  = normalize(sun_dir);
    vec3 earth_center   = vec3(0, 0, -6360.0f);
    vec3 camPos = (camPosLocal / 1000.0f) - earth_center;

    vec3 transmittance;
    vec3 radiance_sun  = GetSkyLuminance(camPos, view_direction, 1.0 - alpha1, sun_direction, transmittance);

    vec3 sun_color = vec3(1.0) - exp(-radiance_sun * 0.0001);

	// Combine
	vec4 color;

    color.rgb = sun_color * cloud_color.rgb * (1. - alpha2);
    color.rgb = pow(color.rgb, vec3(1.0 / 2.2));
    color.rgb += ambient;

	frag_data[0] = vec4(color.rgb, alpha1);
	frag_data[1] = vec4(0);
	frag_data[2] = vec4(0,1,0,1);
}