1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/**
* @file class2\windlight\atmosphericsFuncs.glsl
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
uniform vec3 lightnorm;
uniform vec3 sunlight_color;
uniform vec3 sunlight_linear;
uniform vec3 moonlight_color;
uniform vec3 moonlight_linear;
uniform int sun_up_factor;
uniform vec3 ambient_color;
uniform vec3 ambient_linear;
uniform vec3 blue_horizon;
uniform vec3 blue_horizon_linear;
uniform vec3 blue_density;
uniform vec3 blue_density_linear;
uniform float haze_horizon;
uniform float haze_density;
uniform float haze_density_linear;
uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y;
uniform vec3 glow;
uniform float scene_light_strength;
uniform mat3 ssao_effect_mat;
uniform int no_atmo;
uniform float sun_moon_glow_factor;
float getAmbientClamp() { return 1.0f; }
vec3 srgb_to_linear(vec3 col);
// return colors in sRGB space
void calcAtmosphericVars(vec3 inPositionEye, vec3 light_dir, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive,
out vec3 atten, bool use_ao)
{
vec3 rel_pos = inPositionEye;
//(TERRAIN) limit altitude
if (abs(rel_pos.y) > max_y) rel_pos *= (max_y / rel_pos.y);
vec3 rel_pos_norm = normalize(rel_pos);
float rel_pos_len = length(rel_pos);
vec3 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
// sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
vec3 light_atten = (blue_density + vec3(haze_density * 0.25)) * (density_multiplier * max_y);
// I had thought blue_density and haze_density should have equal weighting,
// but attenuation due to haze_density tends to seem too strong
vec3 combined_haze = blue_density + vec3(haze_density);
vec3 blue_weight = blue_density / combined_haze;
vec3 haze_weight = vec3(haze_density) / combined_haze;
//(TERRAIN) compute sunlight from lightnorm y component. Factor is roughly cosecant(sun elevation) (for short rays like terrain)
float above_horizon_factor = 1.0 / max(1e-6, lightnorm.y);
sunlight *= exp(-light_atten * above_horizon_factor); // for sun [horizon..overhead] this maps to an exp curve [0..1]
// main atmospheric scattering line integral
float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> combined_haze)
// ATI Bugfix -- can't store combined_haze*density_dist*distance_multiplier in a variable because the ati
// compiler gets confused.
combined_haze = exp(-combined_haze * density_dist * distance_multiplier);
// final atmosphere attenuation factor
atten = combined_haze.rgb;
// compute haze glow
float haze_glow = dot(rel_pos_norm, lightnorm.xyz);
// dampen sun additive contrib when not facing it...
// SL-13539: This "if" clause causes an "additive" white artifact at roughly 77 degreees.
// if (length(light_dir) > 0.01)
haze_glow *= max(0.0f, dot(light_dir, rel_pos_norm));
haze_glow = 1. - haze_glow;
// haze_glow is 0 at the sun and increases away from sun
haze_glow = max(haze_glow, .001); // set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
haze_glow *= glow.x;
// higher glow.x gives dimmer glow (because next step is 1 / "angle")
haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function
// add "minimum anti-solar illumination"
haze_glow += .25;
haze_glow *= sun_moon_glow_factor;
vec3 amb_color = ambient_color;
// increase ambient when there are more clouds
vec3 tmpAmbient = amb_color + (vec3(1.) - amb_color) * cloud_shadow * 0.5;
/* decrease value and saturation (that in HSV, not HSL) for occluded areas
* // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html
* // The following line of code performs the equivalent of:
* float ambAlpha = tmpAmbient.a;
* float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis
* vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue);
* tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat,
* ambAlpha);
*/
if (use_ao)
{
tmpAmbient = mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor);
}
// Similar/Shared Algorithms:
// indra\llinventory\llsettingssky.cpp -- LLSettingsSky::calculateLightSettings()
// indra\newview\app_settings\shaders\class1\windlight\atmosphericsFuncs.glsl -- calcAtmosphericVars()
// haze color
vec3 cs = sunlight.rgb * (1. - cloud_shadow);
additive = (blue_horizon.rgb * blue_weight.rgb) * (cs + tmpAmbient.rgb) + (haze_horizon * haze_weight.rgb) * (cs * haze_glow + tmpAmbient.rgb);
// brightness of surface both sunlight and ambient
sunlit = sunlight.rgb;
amblit = tmpAmbient.rgb;
additive *= vec3(1.0 - combined_haze);
}
vec3 srgb_to_linear(vec3 col);
// provide a touch of lighting in the opposite direction of the sun light
// so areas in shadow don't lose all detail
float ambientLighting(vec3 norm, vec3 light_dir)
{
float ambient = min(abs(dot(norm.xyz, light_dir.xyz)), 1.0);
ambient *= 0.56;
ambient *= ambient;
ambient = (1.0 - ambient);
return ambient;
}
// return colors in linear space
void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 additive,
out vec3 atten)
{
#if 1
calcAtmosphericVars(inPositionEye, light_dir, 1.0, sunlit, amblit, additive, atten, false);
sunlit = srgb_to_linear(sunlit);
additive = srgb_to_linear(additive);
amblit = ambient_linear;
amblit *= ambientLighting(norm, light_dir);
#else
//EXPERIMENTAL -- attempt to factor out srgb_to_linear conversions above
vec3 rel_pos = inPositionEye;
//(TERRAIN) limit altitude
if (abs(rel_pos.y) > max_y) rel_pos *= (max_y / rel_pos.y);
vec3 rel_pos_norm = normalize(rel_pos);
float rel_pos_len = length(rel_pos);
vec3 sunlight = (sun_up_factor == 1) ? vec3(sunlight_linear, 0.0) : vec3(moonlight_linear, 0.0);
// sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
vec3 light_atten = (blue_density + vec3(haze_density * 0.25)) * (density_multiplier * max_y);
// I had thought blue_density and haze_density should have equal weighting,
// but attenuation due to haze_density tends to seem too strong
vec3 combined_haze = blue_density + vec3(haze_density);
vec3 blue_weight = blue_density / combined_haze;
vec3 haze_weight = vec3(haze_density) / combined_haze;
//(TERRAIN) compute sunlight from lightnorm y component. Factor is roughly cosecant(sun elevation) (for short rays like terrain)
float above_horizon_factor = 1.0 / max(1e-6, lightnorm.y);
sunlight *= exp(-light_atten * above_horizon_factor); // for sun [horizon..overhead] this maps to an exp curve [0..1]
// main atmospheric scattering line integral
float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> combined_haze)
// ATI Bugfix -- can't store combined_haze*density_dist*distance_multiplier in a variable because the ati
// compiler gets confused.
combined_haze = exp(-combined_haze * density_dist * distance_multiplier);
// final atmosphere attenuation factor
atten = combined_haze.rgb;
// compute haze glow
float haze_glow = dot(rel_pos_norm, lightnorm.xyz);
// dampen sun additive contrib when not facing it...
// SL-13539: This "if" clause causes an "additive" white artifact at roughly 77 degreees.
// if (length(light_dir) > 0.01)
haze_glow *= max(0.0f, dot(light_dir, rel_pos_norm));
haze_glow = 1. - haze_glow;
// haze_glow is 0 at the sun and increases away from sun
haze_glow = max(haze_glow, .001); // set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
haze_glow *= glow.x;
// higher glow.x gives dimmer glow (because next step is 1 / "angle")
haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function
// add "minimum anti-solar illumination"
haze_glow += .25;
haze_glow *= sun_moon_glow_factor;
//vec3 amb_color = vec4(ambient_linear, 0.0);
vec3 amb_color = ambient_color;
// increase ambient when there are more clouds
vec3 tmpAmbient = amb_color + (vec3(1.) - amb_color) * cloud_shadow * 0.5;
// Similar/Shared Algorithms:
// indra\llinventory\llsettingssky.cpp -- LLSettingsSky::calculateLightSettings()
// indra\newview\app_settings\shaders\class1\windlight\atmosphericsFuncs.glsl -- calcAtmosphericVars()
// haze color
vec3 cs = sunlight.rgb * (1. - cloud_shadow);
additive = (blue_horizon.rgb * blue_weight.rgb) * (cs + tmpAmbient.rgb) + (haze_horizon * haze_weight.rgb) * (cs * haze_glow + tmpAmbient.rgb);
// brightness of surface both sunlight and ambient
sunlit = min(sunlight.rgb, vec3(1));
amblit = tmpAmbient.rgb;
additive *= vec3(1.0 - combined_haze);
//sunlit = sunlight_linear;
amblit = ambient_linear*0.8;
#endif
}
|