1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/**
* @file sunLightMSF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* $/LicenseInfo$
*/
#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_ARB_texture_multisample : enable
//class 2, shadows, no SSAO
uniform sampler2DMS depthMap;
uniform sampler2DMS normalMap;
uniform sampler2DRectShadow shadowMap0;
uniform sampler2DRectShadow shadowMap1;
uniform sampler2DRectShadow shadowMap2;
uniform sampler2DRectShadow shadowMap3;
uniform sampler2DShadow shadowMap4;
uniform sampler2DShadow shadowMap5;
// Inputs
uniform mat4 shadow_matrix[6];
uniform vec4 shadow_clip;
uniform float ssao_radius;
uniform float ssao_max_radius;
uniform float ssao_factor;
uniform float ssao_factor_inv;
varying vec2 vary_fragcoord;
varying vec4 vary_light;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform vec2 shadow_res;
uniform vec2 proj_shadow_res;
uniform float shadow_bias;
uniform float shadow_offset;
uniform float spot_shadow_bias;
uniform float spot_shadow_offset;
vec4 getPosition(ivec2 pos_screen, int sample)
{
float depth = texelFetch(depthMap, pos_screen.xy, sample).r;
vec2 sc = vec2(pos_screen.xy)*2.0;
sc /= screen_res;
sc -= vec2(1.0,1.0);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
float pcfShadow(sampler2DRectShadow shadowMap, vec4 stc, float scl)
{
stc.xyz /= stc.w;
stc.z += shadow_bias*scl;
float cs = shadow2DRect(shadowMap, stc.xyz).x;
float shadow = cs;
shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(1.5, 1.5, 0.0)).x, cs);
shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(1.5, -1.5, 0.0)).x, cs);
shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(-1.5, 1.5, 0.0)).x, cs);
shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(-1.5, -1.5, 0.0)).x, cs);
return shadow/5.0;
//return shadow;
}
float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float scl)
{
stc.xyz /= stc.w;
stc.z += spot_shadow_bias*scl;
float cs = shadow2D(shadowMap, stc.xyz).x;
float shadow = cs;
vec2 off = 1.5/proj_shadow_res;
shadow += max(shadow2D(shadowMap, stc.xyz+vec3(off.x, off.y, 0.0)).x, cs);
shadow += max(shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x, cs);
shadow += max(shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x, cs);
shadow += max(shadow2D(shadowMap, stc.xyz+vec3(-off.x, -off.y, 0.0)).x, cs);
return shadow/5.0;
//return shadow;
}
void main()
{
vec2 pos_screen = vary_fragcoord.xy;
ivec2 itc = ivec2(pos_screen);
//try doing an unproject here
vec4 fcol = vec4(0,0,0,0);
for (int i = 0; i < samples; i++)
{
vec4 pos = getPosition(itc, i);
vec4 nmap4 = texelFetch(normalMap, itc, i);
nmap4 = vec4((nmap4.xy-0.5)*2.0,nmap4.z,nmap4.w); // unpack norm
float displace = nmap4.w;
vec3 norm = nmap4.xyz;
/*if (pos.z == 0.0) // do nothing for sky *FIX: REMOVE THIS IF/WHEN THE POSITION MAP IS BEING USED AS A STENCIL
{
gl_FragColor = vec4(0.0); // doesn't matter
return;
}*/
float shadow = 1.0;
float dp_directional_light = max(0.0, dot(norm, vary_light.xyz));
vec3 shadow_pos = pos.xyz + displace*norm;
vec3 offset = vary_light.xyz * (1.0-dp_directional_light);
vec4 spos = vec4(shadow_pos+offset*shadow_offset, 1.0);
if (spos.z > -shadow_clip.w)
{
if (dp_directional_light == 0.0)
{
// if we know this point is facing away from the sun then we know it's in shadow without having to do a squirrelly shadow-map lookup
shadow = 0.0;
}
else
{
vec4 lpos;
if (spos.z < -shadow_clip.z)
{
lpos = shadow_matrix[3]*spos;
lpos.xy *= shadow_res;
shadow = pcfShadow(shadowMap3, lpos, 0.25);
shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0);
}
else if (spos.z < -shadow_clip.y)
{
lpos = shadow_matrix[2]*spos;
lpos.xy *= shadow_res;
shadow = pcfShadow(shadowMap2, lpos, 0.5);
}
else if (spos.z < -shadow_clip.x)
{
lpos = shadow_matrix[1]*spos;
lpos.xy *= shadow_res;
shadow = pcfShadow(shadowMap1, lpos, 0.75);
}
else
{
lpos = shadow_matrix[0]*spos;
lpos.xy *= shadow_res;
shadow = pcfShadow(shadowMap0, lpos, 1.0);
}
// take the most-shadowed value out of these two:
// * the blurred sun shadow in the light (shadow) map
// * an unblurred dot product between the sun and this norm
// the goal is to err on the side of most-shadow to fill-in shadow holes and reduce artifacting
shadow = min(shadow, dp_directional_light);
//lpos.xy /= lpos.w*32.0;
//if (fract(lpos.x) < 0.1 || fract(lpos.y) < 0.1)
//{
// shadow = 0.0;
//}
}
}
else
{
// more distant than the shadow map covers
shadow = 1.0;
}
fcol[0] += shadow;
fcol[1] += 1.0;
spos = vec4(shadow_pos+norm*spot_shadow_offset, 1.0);
//spotlight shadow 1
vec4 lpos = shadow_matrix[4]*spos;
fcol[2] += pcfShadow(shadowMap4, lpos, 0.8);
//spotlight shadow 2
lpos = shadow_matrix[5]*spos;
fcol[3] += pcfShadow(shadowMap5, lpos, 0.8);
}
gl_FragColor = fcol/samples;
}
|