summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class2/deferred/skyF.glsl
blob: 0f33bac3c677d53ad68d01ddd1c7a47c0abbf8e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/** 
 * @file class2/deferred/skyF.glsl
 *
 * $LicenseInfo:firstyear=2005&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2005, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

uniform mat4 modelview_projection_matrix;

// SKY ////////////////////////////////////////////////////////////////////////
// The vertex shader for creating the atmospheric sky
///////////////////////////////////////////////////////////////////////////////

// Inputs
uniform vec3 camPosLocal;

uniform vec4 lightnorm;
uniform vec4 sunlight_color;
uniform vec4 moonlight_color;
uniform int sun_up_factor;
uniform vec4 ambient_color;
uniform vec4 blue_horizon;
uniform vec4 blue_density;
uniform float haze_horizon;
uniform float haze_density;

uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y;

uniform vec4 glow;
uniform float sun_moon_glow_factor;

uniform vec4 cloud_color;

#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_data[3];
#else
#define frag_data gl_FragData
#endif

VARYING vec3 pos;

/////////////////////////////////////////////////////////////////////////
// The fragment shader for the sky
/////////////////////////////////////////////////////////////////////////

uniform vec4 gamma;
uniform sampler2D rainbow_map;
uniform sampler2D halo_map;

uniform float moisture_level;
uniform float droplet_radius;
uniform float ice_level;

vec3 rainbow(float d)
{
   d = clamp(d, -1.0, 0.0);
   float rad = (droplet_radius - 5.0f) / 1024.0f;
   return pow(texture2D(rainbow_map, vec2(rad, d)).rgb, vec3(1.8)) * moisture_level;
}

vec3 halo22(float d)
{
   d = clamp(d, 0.1, 1.0);
   float v = sqrt(clamp(1 - (d * d), 0, 1));
   return texture2D(halo_map, vec2(0, v)).rgb * ice_level;
}

/// Soft clips the light with a gamma correction
vec3 scaleSoftClip(vec3 light);

void main()
{

    // World / view / projection
    // Get relative position
    vec3 P = pos.xyz - camPosLocal.xyz + vec3(0,50,0);

    // Set altitude
    if (P.y > 0.)
    {
        P *= (max_y / P.y);
    }
    else
    {
        P *= (-32000. / P.y);
    }

    // Can normalize then
    vec3 Pn = normalize(P);
    float  Plen = length(P);

    // Initialize temp variables
    vec4 temp1 = vec4(0.);
    vec4 temp2 = vec4(0.);
    vec4 blue_weight;
    vec4 haze_weight;
    vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
    vec4 light_atten;

    float dens_mul = density_multiplier;
    float dist_mul = max(0.05, distance_multiplier);

    // Sunlight attenuation effect (hue and brightness) due to atmosphere
    // this is used later for sunlight modulation at various altitudes
    light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);

    // Calculate relative weights
    temp1 = abs(blue_density) + vec4(abs(haze_density));
    blue_weight = blue_density / temp1;
    haze_weight = haze_density / temp1;

    // Compute sunlight from P & lightnorm (for long rays like sky)
    temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y );
    temp2.y = 1. / temp2.y;
    sunlight *= exp( - light_atten * temp2.y);

    // Distance
    temp2.z = Plen * dens_mul;

    // Transparency (-> temp1)
    // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
    // compiler gets confused.
    //temp1 = exp(-temp1 * temp2.z * dist_mul);
    temp1 = exp(-temp1 * dist_mul);

    // Compute haze glow
    temp2.x = dot(Pn, lightnorm.xyz);
    temp2.x = 1. - temp2.x;
        // temp2.x is 0 at the sun and increases away from sun
    temp2.x = max(temp2.x, .001);   
        // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
    temp2.x *= glow.x;
        // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
    temp2.x = pow(temp2.x, glow.z);
        // glow.z should be negative, so we're doing a sort of (1 / "angle") function

    // Add "minimum anti-solar illumination"
    temp2.x += .25;

    temp2.x *= sun_moon_glow_factor;

    // Haze color above cloud
    vec4 color = (    blue_horizon * blue_weight * (sunlight + ambient_color)
                + (haze_horizon * haze_weight) * (sunlight * temp2.x + ambient_color)
             ); 


    // Increase ambient when there are more clouds
    vec4 tmpAmbient = ambient_color;
    tmpAmbient += max(vec4(0), (1. - ambient_color)) * cloud_shadow * 0.5; 

    // Dim sunlight by cloud shadow percentage
    sunlight *= max(0.0, (1. - cloud_shadow));

    // Haze color below cloud
    vec4 additiveColorBelowCloud = (blue_horizon * blue_weight * (sunlight + tmpAmbient)
                + (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient)
             ); 

    // Final atmosphere additive
    color *= (1. - temp1);
    
    // Attenuate cloud color by atmosphere
    temp1 = sqrt(temp1);    //less atmos opacity (more transparency) below clouds

    // At horizon, blend high altitude sky color towards the darker color below the clouds
    color += (additiveColorBelowCloud - color) * (1. - sqrt(temp1));
    
    float optic_d = dot(Pn, lightnorm.xyz);

    vec3 halo_22 = halo22(optic_d);

    color.rgb += rainbow(optic_d);

    color.rgb += halo_22;

    color.rgb *= 2.;
    color.rgb = scaleSoftClip(color.rgb);

    /// Gamma correct for WL (soft clip effect).
    frag_data[0] = vec4(color.rgb, 1.0);
    frag_data[1] = vec4(0.0,0.0,0.0,0.0);
    frag_data[2] = vec4(0.5,0.5,0.0,1.0); //1.0 in norm.w masks off fog
}