1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/**
* @file pbrmetallicroughnessV.glsl
*
* $LicenseInfo:firstyear=2024&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
// GLTF pbrMetallicRoughness implementation
uniform mat4 modelview_matrix;
uniform mat4 projection_matrix;
#ifdef MULTI_UV
in vec2 texcoord1;
int base_color_texcoord = 0;
int emissive_texcoord = 0;
#ifndef UNLIT
int normal_texcoord = 0;
int metallic_roughness_texcoord = 0;
int occlusion_texcoord = 0;
#endif
#endif
uniform int gltf_material_id;
layout (std140) uniform GLTFMaterials
{
// index by gltf_material_id*12
// [gltf_material_id + [0-1]] - base color transform
// [gltf_material_id + [2-3]] - normal transform
// [gltf_material_id + [4-5]] - metallic roughness transform
// [gltf_material_id + [6-7]] - emissive transform
// [gltf_material_id + [8-9]] - occlusion transform
// [gltf_material_id + 10] - emissive factor
// [gltf_material_id + 11] - .r unused, .g roughness, .b metalness, .a minimum alpha
// Transforms are packed as follows
// packed[0] = vec4(scale.x, scale.y, rotation, offset.x)
// packed[1] = vec4(mScale.y, texcoord, 0, 0)
vec4 gltf_material_data[MAX_UBO_VEC4S];
};
vec4[2] texture_base_color_transform;
vec4[2] texture_normal_transform;
vec4[2] texture_metallic_roughness_transform;
vec4[2] texture_emissive_transform;
vec4[2] texture_occlusion_transform;
void unpackTextureTransforms()
{
if (gltf_material_id != -1)
{
int idx = gltf_material_id*12;
texture_base_color_transform[0] = gltf_material_data[idx+0];
texture_base_color_transform[1] = gltf_material_data[idx+1];
texture_normal_transform[0] = gltf_material_data[idx+2];
texture_normal_transform[1] = gltf_material_data[idx+3];
texture_metallic_roughness_transform[0] = gltf_material_data[idx+4];
texture_metallic_roughness_transform[1] = gltf_material_data[idx+5];
texture_emissive_transform[0] = gltf_material_data[idx+6];
texture_emissive_transform[1] = gltf_material_data[idx+7];
texture_occlusion_transform[0] = gltf_material_data[idx+8];
texture_occlusion_transform[1] = gltf_material_data[idx+9];
#ifdef MULTI_UV
base_color_texcoord = int(gltf_material_data[idx+1].g);
emissive_texcoord = int(gltf_material_data[idx+7].g);
#ifndef UNLIT
normal_texcoord = int(gltf_material_data[idx+3].g);
metallic_roughness_texcoord = int(gltf_material_data[idx+5].g);
occlusion_texcoord = int(gltf_material_data[idx+9].g);
#endif
#endif
}
else
{
texture_base_color_transform[0] = vec4(1.0, 1.0, 0.0, 0.0);
texture_base_color_transform[1] = vec4(0.0, 0.0, 0.0, 0.0);
texture_normal_transform[0] = vec4(1.0, 1.0, 0.0, 0.0);
texture_normal_transform[1] = vec4(0.0, 0.0, 0.0, 0.0);
texture_metallic_roughness_transform[0] = vec4(1.0, 1.0, 0.0, 0.0);
texture_metallic_roughness_transform[1] = vec4(0.0, 0.0, 0.0, 0.0);
texture_emissive_transform[0] = vec4(1.0, 1.0, 0.0, 0.0);
texture_emissive_transform[1] = vec4(0.0, 0.0, 0.0, 0.0);
texture_occlusion_transform[0] = vec4(1.0, 1.0, 0.0, 0.0);
texture_occlusion_transform[1] = vec4(0.0, 0.0, 0.0, 0.0);
}
}
in vec3 position;
in vec4 diffuse_color;
in vec2 texcoord0;
out vec2 base_color_uv;
out vec2 emissive_uv;
out vec4 vertex_color;
out vec3 vary_position;
#ifndef UNLIT
in vec3 normal;
in vec4 tangent;
out vec2 normal_uv;
out vec2 metallic_roughness_uv;
out vec2 occlusion_uv;
out vec3 vary_tangent;
flat out float vary_sign;
out vec3 vary_normal;
#endif
vec2 gltf_texture_transform(vec2 texcoord, vec4[2] p)
{
texcoord.y = 1.0 - texcoord.y;
vec2 Scale = p[0].xy;
float Rotation = -p[0].z;
vec2 Offset = vec2(p[0].w, p[1].x);
mat3 translation = mat3(1,0,0, 0,1,0, Offset.x, Offset.y, 1);
mat3 rotation = mat3(
cos(Rotation), sin(Rotation), 0,
-sin(Rotation), cos(Rotation), 0,
0, 0, 1);
mat3 scale = mat3(Scale.x,0,0, 0,Scale.y,0, 0,0,1);
mat3 matrix = translation * rotation * scale;
vec2 uvTransformed = ( matrix * vec3(texcoord.xy, 1) ).xy;
uvTransformed.y = 1.0 - uvTransformed.y;
return uvTransformed;
}
#ifndef UNLIT
vec3 gltf_tangent_space_transform(vec4 vertex_tangent, vec3 vertex_normal, vec4[2] khr_gltf_transform)
{ //derived from tangent_space_transform in textureUtilV.glsl
vec2 weights = vec2(0, 1);
// Convert to left-handed coordinate system
weights.y = -weights.y;
// Apply KHR_texture_transform (rotation only)
float khr_rotation = khr_gltf_transform[0].z;
mat2 khr_rotation_mat = mat2(
cos(khr_rotation),-sin(khr_rotation),
sin(khr_rotation), cos(khr_rotation)
);
weights = khr_rotation_mat * weights;
// Convert back to right-handed coordinate system
weights.y = -weights.y;
// Similar to the MikkTSpace-compatible method of extracting the binormal
// from the normal and tangent, as seen in the fragment shader
vec3 vertex_binormal = vertex_tangent.w * cross(vertex_normal, vertex_tangent.xyz);
return (weights.x * vertex_binormal.xyz) + (weights.y * vertex_tangent.xyz);
return vertex_tangent.xyz;
}
#endif
#ifdef ALPHA_BLEND
out vec3 vary_fragcoord;
#endif
#ifdef HAS_SKIN
layout (std140) uniform GLTFJoints
{
mat3x4 gltf_joints[MAX_NODES_PER_GLTF_OBJECT];
};
in uvec4 joint;
in vec4 weight4;
mat4 getGLTFTransform()
{
int i;
vec4 w = weight4;
uint i1 = joint.x;
uint i2 = joint.y;
uint i3 = joint.z;
uint i4 = joint.w;
mat3 mat = mat3(gltf_joints[i1])*w.x;
mat += mat3(gltf_joints[i2])*w.y;
mat += mat3(gltf_joints[i3])*w.z;
mat += mat3(gltf_joints[i4])*w.w;
vec3 trans = vec3(gltf_joints[i1][0].w,gltf_joints[i1][1].w,gltf_joints[i1][2].w)*w.x;
trans += vec3(gltf_joints[i2][0].w,gltf_joints[i2][1].w,gltf_joints[i2][2].w)*w.y;
trans += vec3(gltf_joints[i3][0].w,gltf_joints[i3][1].w,gltf_joints[i3][2].w)*w.z;
trans += vec3(gltf_joints[i4][0].w,gltf_joints[i4][1].w,gltf_joints[i4][2].w)*w.w;
mat4 ret;
ret[0] = vec4(mat[0], 0);
ret[1] = vec4(mat[1], 0);
ret[2] = vec4(mat[2], 0);
ret[3] = vec4(trans, 1.0);
return ret;
}
#else
layout (std140) uniform GLTFNodes
{
mat3x4 gltf_nodes[MAX_NODES_PER_GLTF_OBJECT];
};
uniform int gltf_node_id = 0;
mat4 getGLTFTransform()
{
mat4 ret;
mat3x4 src = gltf_nodes[gltf_node_id];
ret[0] = vec4(src[0].xyz, 0);
ret[1] = vec4(src[1].xyz, 0);
ret[2] = vec4(src[2].xyz, 0);
ret[3] = vec4(src[0].w, src[1].w, src[2].w, 1);
return ret;
}
#endif
void main()
{
unpackTextureTransforms();
mat4 mat = getGLTFTransform();
mat = modelview_matrix * mat;
vec3 pos = (mat*vec4(position.xyz,1.0)).xyz;
vary_position = pos;
vec4 vert = projection_matrix * vec4(pos, 1.0);
gl_Position = vert;
vec2 bcuv;
vec2 emuv;
#ifdef MULTI_UV
vec2 uv[2];
uv[0] = texcoord0;
uv[1] = texcoord1;
bcuv = uv[base_color_texcoord];
emuv = uv[emissive_texcoord];
#else
bcuv = texcoord0;
emuv = texcoord0;
#endif
base_color_uv = gltf_texture_transform(bcuv, texture_base_color_transform);
emissive_uv = gltf_texture_transform(emuv, texture_emissive_transform);
#ifndef UNLIT
vec2 normuv;
vec2 rmuv;
vec2 ouv;
#ifdef MULTI_UV
normuv = uv[normal_texcoord];
rmuv = uv[metallic_roughness_texcoord];
ouv = uv[occlusion_texcoord];
#else
normuv = texcoord0;
rmuv = texcoord0;
ouv = texcoord0;
#endif
normal_uv = gltf_texture_transform(normuv, texture_normal_transform);
metallic_roughness_uv = gltf_texture_transform(rmuv, texture_metallic_roughness_transform);
occlusion_uv = gltf_texture_transform(ouv, texture_occlusion_transform);
#endif
#ifndef UNLIT
vec3 n = (mat*vec4(normal.xyz+position.xyz,1.0)).xyz-pos.xyz;
vec3 t = (mat*vec4(tangent.xyz+position.xyz,1.0)).xyz-pos.xyz;
n = normalize(n);
vary_tangent = normalize(gltf_tangent_space_transform(vec4(t, tangent.w), n, texture_normal_transform));
vary_sign = tangent.w;
vary_normal = n;
#endif
vertex_color = diffuse_color;
#ifdef ALPHA_BLEND
vary_fragcoord = vert.xyz;
#endif
}
|