1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
/**
* @file srgbF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
uniform sampler2D exposureMap;
vec3 srgb_to_linear(vec3 cs)
{
vec3 low_range = cs / vec3(12.92);
vec3 high_range = pow((cs+vec3(0.055))/vec3(1.055), vec3(2.4));
bvec3 lte = lessThanEqual(cs,vec3(0.04045));
#ifdef OLD_SELECT
vec3 result;
result.r = lte.r ? low_range.r : high_range.r;
result.g = lte.g ? low_range.g : high_range.g;
result.b = lte.b ? low_range.b : high_range.b;
return result;
#else
return mix(high_range, low_range, lte);
#endif
}
vec3 linear_to_srgb(vec3 cl)
{
cl = clamp(cl, vec3(0), vec3(1));
vec3 low_range = cl * 12.92;
vec3 high_range = 1.055 * pow(cl, vec3(0.41666)) - 0.055;
bvec3 lt = lessThan(cl,vec3(0.0031308));
#ifdef OLD_SELECT
vec3 result;
result.r = lt.r ? low_range.r : high_range.r;
result.g = lt.g ? low_range.g : high_range.g;
result.b = lt.b ? low_range.b : high_range.b;
return result;
#else
return mix(high_range, low_range, lt);
#endif
}
vec3 ColorFromRadiance(vec3 radiance)
{
return vec3(1.0) - exp(-radiance * 0.0001);
}
vec3 rgb2hsv(vec3 c)
{
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 1.0e-3;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
vec3 hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
const mat3 inv_ACESOutputMat = mat3(0.643038, 0.0592687, 0.0059619, 0.311187, 0.931436, 0.063929, 0.0457755, 0.00929492, 0.930118 );
const mat3 inv_ACESInputMat = mat3( 1.76474, -0.147028, -0.0363368, -0.675778, 1.16025, -0.162436, -0.0889633, -0.0132237, 1.19877 );
vec3 inv_RRTAndODTFit(vec3 x)
{
float A = 0.0245786;
float B = 0.000090537;
float C = 0.983729;
float D = 0.4329510;
float E = 0.238081;
return (A - D * x)/(2.0 * (C * x - 1.0)) - sqrt(pow(D * x - A, vec3(2.0)) - 4.0 * (C * x - 1.0) * (B + E * x))/(2.0 * (C * x - 1.0));
}
// experimental inverse of ACES Hill tonemapping
vec3 inv_toneMapACES_Hill(vec3 color)
{
color = inv_ACESOutputMat * color;
// Apply RRT and ODT
color = inv_RRTAndODTFit(color);
color = inv_ACESInputMat * color;
return color;
}
|