1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
/**
* @file class1/deferred/textureUtilV.glsl
*
* $LicenseInfo:firstyear=2023&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2023, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
// This shader code is taken from the sample code on the KHR_texture_transform
// spec page page, plus or minus some sign error corrections (I think because the GLSL
// matrix constructor is backwards?):
// https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_transform
// Previously (6494eed242b1), we passed in a single, precalculated matrix
// uniform per transform into the shaders. However, that was found to produce
// small-but-noticeable discrepancies with the GLTF sample model
// "TextureTransformTest", likely due to numerical precision differences. In
// the interest of parity with other renderers, calculate the transform
// directly in the shader. -Cosmic,2023-02-24
vec2 khr_texture_transform(vec2 texcoord, vec2 scale, float rotation, vec2 offset)
{
mat3 scale_mat = mat3(scale.x,0,0, 0,scale.y,0, 0,0,1);
mat3 offset_mat = mat3(1,0,0, 0,1,0, offset.x, offset.y, 1);
mat3 rotation_mat = mat3(
cos(rotation),-sin(rotation), 0,
sin(rotation), cos(rotation), 0,
0, 0, 1
);
mat3 transform = offset_mat * rotation_mat * scale_mat;
return (transform * vec3(texcoord, 1)).xy;
}
// vertex_texcoord - The UV texture coordinates sampled from the vertex at
// runtime. Per SL convention, this is in a right-handed UV coordinate
// system. Collada models also have right-handed UVs.
// khr_gltf_transform - The texture transform matrix as defined in the
// KHR_texture_transform GLTF extension spec. It assumes a left-handed UV
// coordinate system. GLTF models also have left-handed UVs.
// sl_animation_transform - The texture transform matrix for texture
// animations, available through LSL script functions such as
// LlSetTextureAnim. It assumes a right-handed UV coordinate system.
// texcoord - The final texcoord to use for image sampling
vec2 texture_transform(vec2 vertex_texcoord, vec2 khr_gltf_scale, float khr_gltf_rotation, vec2 khr_gltf_offset, mat4 sl_animation_transform)
{
vec2 texcoord = vertex_texcoord;
// Apply texture animation first to avoid shearing and other artifacts
texcoord = (sl_animation_transform * vec4(texcoord, 0, 1)).xy;
// Convert to left-handed coordinate system. The offset of 1 is necessary
// for rotations to be applied correctly.
texcoord.y = 1.0 - texcoord.y;
texcoord = khr_texture_transform(texcoord, khr_gltf_scale, khr_gltf_rotation, khr_gltf_offset);
// Convert back to right-handed coordinate system
texcoord.y = 1.0 - texcoord.y;
// To make things more confusing, all SL image assets are upside-down
// We may need an additional sign flip here when we implement a Vulkan backend
return texcoord;
}
|