1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
/**
* @file softenLightF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#extension GL_ARB_texture_rectangle : enable
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_color;
#else
#define frag_color gl_FragColor
#endif
uniform sampler2DRect diffuseRect;
uniform sampler2DRect specularRect;
uniform sampler2DRect positionMap;
uniform sampler2DRect normalMap;
uniform sampler2DRect lightMap;
uniform sampler2DRect depthMap;
uniform samplerCube environmentMap;
uniform sampler2D lightFunc;
uniform float blur_size;
uniform float blur_fidelity;
// Inputs
uniform vec4 morphFactor;
uniform vec3 camPosLocal;
//uniform vec4 camPosWorld;
uniform vec4 gamma;
uniform vec4 lightnorm;
uniform vec4 sunlight_color;
uniform vec4 ambient;
uniform vec4 blue_horizon;
uniform vec4 blue_density;
uniform float haze_horizon;
uniform float haze_density;
uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y;
uniform vec4 glow;
uniform float scene_light_strength;
uniform mat3 env_mat;
uniform mat3 ssao_effect_mat;
uniform vec3 sun_dir;
VARYING vec2 vary_fragcoord;
vec3 vary_PositionEye;
vec3 vary_SunlitColor;
vec3 vary_AmblitColor;
vec3 vary_AdditiveColor;
vec3 vary_AtmosAttenuation;
uniform mat4 inv_proj;
uniform vec2 screen_res;
vec3 decode_normal (vec2 enc)
{
vec2 fenc = enc*4-2;
float f = dot(fenc,fenc);
float g = sqrt(1-f/4);
vec3 n;
n.xy = fenc*g;
n.z = 1-f/2;
return n;
}
vec4 getPosition_d(vec2 pos_screen, float depth)
{
vec2 sc = pos_screen.xy*2.0;
sc /= screen_res;
sc -= vec2(1.0,1.0);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
vec4 getPosition(vec2 pos_screen)
{ //get position in screen space (world units) given window coordinate and depth map
float depth = texture2DRect(depthMap, pos_screen.xy).a;
return getPosition_d(pos_screen, depth);
}
vec3 getPositionEye()
{
return vary_PositionEye;
}
vec3 getSunlitColor()
{
return vary_SunlitColor;
}
vec3 getAmblitColor()
{
return vary_AmblitColor;
}
vec3 getAdditiveColor()
{
return vary_AdditiveColor;
}
vec3 getAtmosAttenuation()
{
return vary_AtmosAttenuation;
}
void setPositionEye(vec3 v)
{
vary_PositionEye = v;
}
void setSunlitColor(vec3 v)
{
vary_SunlitColor = v;
}
void setAmblitColor(vec3 v)
{
vary_AmblitColor = v;
}
void setAdditiveColor(vec3 v)
{
vary_AdditiveColor = v;
}
void setAtmosAttenuation(vec3 v)
{
vary_AtmosAttenuation = v;
}
void calcAtmospherics(vec3 inPositionEye, float ambFactor) {
vec3 P = inPositionEye;
setPositionEye(P);
vec3 tmpLightnorm = lightnorm.xyz;
vec3 Pn = normalize(P);
float Plen = length(P);
vec4 temp1 = vec4(0);
vec3 temp2 = vec3(0);
vec4 blue_weight;
vec4 haze_weight;
vec4 sunlight = sunlight_color;
vec4 light_atten;
//sunlight attenuation effect (hue and brightness) due to atmosphere
//this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
//I had thought blue_density and haze_density should have equal weighting,
//but attenuation due to haze_density tends to seem too strong
temp1 = blue_density + vec4(haze_density);
blue_weight = blue_density / temp1;
haze_weight = vec4(haze_density) / temp1;
//(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain)
temp2.y = max(0.0, tmpLightnorm.y);
temp2.y = 1. / temp2.y;
sunlight *= exp( - light_atten * temp2.y);
// main atmospheric scattering line integral
temp2.z = Plen * density_multiplier;
// Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati
// compiler gets confused.
temp1 = exp(-temp1 * temp2.z * distance_multiplier);
//final atmosphere attenuation factor
setAtmosAttenuation(temp1.rgb);
//compute haze glow
//(can use temp2.x as temp because we haven't used it yet)
temp2.x = dot(Pn, tmpLightnorm.xyz);
temp2.x = 1. - temp2.x;
//temp2.x is 0 at the sun and increases away from sun
temp2.x = max(temp2.x, .03); //was glow.y
//set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x;
//higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z);
//glow.z should be negative, so we're doing a sort of (1 / "angle") function
//add "minimum anti-solar illumination"
temp2.x += .25;
//increase ambient when there are more clouds
vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5;
/* decrease value and saturation (that in HSV, not HSL) for occluded areas
* // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html
* // The following line of code performs the equivalent of:
* float ambAlpha = tmpAmbient.a;
* float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis
* vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue);
* tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha);
*/
tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a);
//haze color
setAdditiveColor(
vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x
+ tmpAmbient)));
//brightness of surface both sunlight and ambient
setSunlitColor(vec3(sunlight * .5));
setAmblitColor(vec3(tmpAmbient * .25));
setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1));
}
vec3 atmosLighting(vec3 light)
{
light *= getAtmosAttenuation().r;
light += getAdditiveColor();
return (2.0 * light);
}
vec3 atmosTransport(vec3 light) {
light *= getAtmosAttenuation().r;
light += getAdditiveColor() * 2.0;
return light;
}
vec3 atmosGetDiffuseSunlightColor()
{
return getSunlitColor();
}
vec3 scaleDownLight(vec3 light)
{
return (light / scene_light_strength );
}
vec3 scaleUpLight(vec3 light)
{
return (light * scene_light_strength);
}
vec3 atmosAmbient(vec3 light)
{
return getAmblitColor() + light / 2.0;
}
vec3 atmosAffectDirectionalLight(float lightIntensity)
{
return getSunlitColor() * lightIntensity;
}
vec3 scaleSoftClip(vec3 light)
{
//soft clip effect:
light = 1. - clamp(light, vec3(0.), vec3(1.));
light = 1. - pow(light, gamma.xxx);
return light;
}
void main()
{
vec2 tc = vary_fragcoord.xy;
float depth = texture2DRect(depthMap, tc.xy).r;
vec3 pos = getPosition_d(tc, depth).xyz;
vec4 norm = texture2DRect(normalMap, tc);
float envIntensity = norm.z;
norm.xyz = decode_normal(norm.xy); // unpack norm
float da = max(dot(norm.xyz, sun_dir.xyz), 0.0);
da = pow(da, 0.7);
vec4 diffuse = texture2DRect(diffuseRect, tc);
vec4 spec = texture2DRect(specularRect, vary_fragcoord.xy);
vec3 col;
float bloom = 0.0;
if (diffuse.a < 0.9)
{
calcAtmospherics(pos.xyz, 1.0);
col = atmosAmbient(vec3(0));
col += atmosAffectDirectionalLight(max(min(da, 1.0), diffuse.a));
col *= diffuse.rgb;
vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz));
if (spec.a > 0.0) // specular reflection
{
// the old infinite-sky shiny reflection
//
float sa = dot(refnormpersp, sun_dir.xyz);
vec3 dumbshiny = vary_SunlitColor*(texture2D(lightFunc, vec2(sa, spec.a)).r);
// add the two types of shiny together
vec3 spec_contrib = dumbshiny * spec.rgb;
bloom = dot(spec_contrib, spec_contrib) / 6;
col += spec_contrib;
}
if (envIntensity > 0.0)
{ //add environmentmap
vec3 env_vec = env_mat * refnormpersp;
col = mix(col.rgb, textureCube(environmentMap, env_vec).rgb,
max(envIntensity-diffuse.a*2.0, 0.0));
}
col = atmosLighting(col);
col = scaleSoftClip(col);
col = mix(col.rgb, diffuse.rgb, diffuse.a);
}
else
{
col = diffuse.rgb;
}
frag_color.rgb = col;
//frag_color.a = bloom;
frag_color.a = 0.0;
}
|