summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class1/deferred/shadowUtil.glsl
blob: c2cb0eb8c3ed624a57609923a3e4046c96e129de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/** 
 * @file class1/deferred/shadowUtil.glsl
 *
 * $LicenseInfo:firstyear=2007&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2007, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

uniform sampler2DRect   normalMap;
uniform sampler2DRect   depthMap;
uniform sampler2DShadow shadowMap0;
uniform sampler2DShadow shadowMap1;
uniform sampler2DShadow shadowMap2;
uniform sampler2DShadow shadowMap3;
uniform sampler2DShadow shadowMap4;
uniform sampler2DShadow shadowMap5;

uniform vec3 sun_dir;
uniform vec3 moon_dir;
uniform vec2 shadow_res;
uniform vec2 proj_shadow_res;
uniform mat4 shadow_matrix[6];
uniform vec4 shadow_clip;
uniform float shadow_bias;
uniform float shadow_offset;
uniform float spot_shadow_bias;
uniform float spot_shadow_offset;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform int sun_up_factor;

float pcfShadow(sampler2DShadow shadowMap, vec3 norm, vec4 stc, float bias_mul, vec2 pos_screen, vec3 light_dir)
{
    float offset = shadow_bias * bias_mul;
    stc.xyz /= stc.w;
    stc.z += offset * 4.0;
    stc.x = floor(stc.x*shadow_res.x + fract(stc.y*shadow_res.y))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here
    float cs = shadow2D(shadowMap, stc.xyz).x;
    float shadow = cs * 4.0;
    stc.z += offset * 2.0;
    shadow += shadow2D(shadowMap, stc.xyz+vec3( 1.5/shadow_res.x,  0.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3( 0.5/shadow_res.x, -1.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.5/shadow_res.x, -0.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-0.5/shadow_res.x,  1.5/shadow_res.y, 0.0)).x;
    return clamp(shadow * 0.125, 0.0, 1.0);
}

float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen)
{
    stc.xyz /= stc.w;
    stc.z += spot_shadow_bias * bias_scale;
    stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap

    float cs = shadow2D(shadowMap, stc.xyz).x;
    float shadow = cs;

    vec2 off = 1.0/proj_shadow_res;
    off.y *= 1.5;
    
    shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x;
    return shadow*0.2;
}

float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen)
{
    float shadow = 0.0f;
    vec3 light_dir = normalize((sun_up_factor == 1) ? sun_dir : moon_dir);

    float dp_directional_light = max(0.0, dot(norm.xyz, light_dir));
          dp_directional_light = clamp(dp_directional_light, 0.0, 1.0);

    vec3 shadow_pos = pos.xyz;

    vec3 offset = light_dir.xyz * (1.0 - dp_directional_light);

    shadow_pos += offset * shadow_offset * 2.0;

    vec4 spos = vec4(shadow_pos.xyz, 1.0);

    if (spos.z > -shadow_clip.w)
    {   
        vec4 lpos;
        vec4 near_split = shadow_clip*-0.75;
        vec4 far_split = shadow_clip*-1.25;
        vec4 transition_domain = near_split-far_split;
        float weight = 0.0;

        if (spos.z < near_split.z)
        {
            lpos = shadow_matrix[3]*spos;
            
            float w = 1.0;
            w -= max(spos.z-far_split.z, 0.0)/transition_domain.z;
            w = clamp(w, 0.0, 1.0);
            shadow += pcfShadow(shadowMap3, norm, lpos, 1.0, pos_screen, light_dir)*w;
            weight += w;
            shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0);
        }

        if (spos.z < near_split.y && spos.z > far_split.z)
        {
            lpos = shadow_matrix[2]*spos;
            
            float w = 1.0;
            w -= max(spos.z-far_split.y, 0.0)/transition_domain.y;
            w -= max(near_split.z-spos.z, 0.0)/transition_domain.z;
            w = clamp(w, 0.25, 1.0);
            shadow += pcfShadow(shadowMap2, norm, lpos, 1.0, pos_screen, light_dir)*w;
            weight += w;
        }

        if (spos.z < near_split.x && spos.z > far_split.y)
        {
            lpos = shadow_matrix[1]*spos;
            
            float w = 1.0;
            w -= max(spos.z-far_split.x, 0.0)/transition_domain.x;
            w -= max(near_split.y-spos.z, 0.0)/transition_domain.y;
            w = clamp(w, 0.5, 1.0);
            shadow += pcfShadow(shadowMap1, norm, lpos, 1.0, pos_screen, light_dir)*w;
            weight += w;
        }

        if (spos.z > far_split.x)
        {
            lpos = shadow_matrix[0]*spos;
                            
            float w = 1.0;
            w -= max(near_split.x-spos.z, 0.0)/transition_domain.x;
            w = clamp(w, 0.75, 1.0);
            shadow += pcfShadow(shadowMap0, norm, lpos, 1.0, pos_screen, light_dir)*w;
            weight += w;
        }

        shadow /= weight;
    }
    else
    {
        return 1.0f; // lit beyond the far split...
    }
    //shadow = min(dp_directional_light,shadow);
    return shadow;
}

float sampleSpotShadow(vec3 pos, vec3 norm, int index, vec2 pos_screen)
{
    float shadow = 0.0f;
    pos += norm * spot_shadow_offset;

    vec4 spos = vec4(pos,1.0);
    if (spos.z > -shadow_clip.w)
    {   
        vec4 lpos;
        
        vec4 near_split = shadow_clip*-0.75;
        vec4 far_split = shadow_clip*-1.25;
        vec4 transition_domain = near_split-far_split;
        float weight = 0.0;

        {
            float w = 1.0;
            w -= max(spos.z-far_split.z, 0.0)/transition_domain.z;

            if (index == 0)
            {        
                lpos = shadow_matrix[4]*spos;
                shadow += pcfSpotShadow(shadowMap4, lpos, 0.8, spos.xy)*w;
            }
            else
            {
                lpos = shadow_matrix[5]*spos;
                shadow += pcfSpotShadow(shadowMap5, lpos, 0.8, spos.xy)*w;
            }
            weight += w;
            shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0);
        }

        shadow /= weight;
    }
    else
    {
        shadow = 1.0f;
    }
    return shadow;
}