summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl
blob: 07d28ed4cdd2df2ea7ec7f8376fb0c3209640471 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/** 
 * @file materialF.glsl
 *
 * $LicenseInfo:firstyear=2007&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2007, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */
 
#define DIFFUSE_ALPHA_MODE_IGNORE	0
#define DIFFUSE_ALPHA_MODE_BLEND	1
#define DIFFUSE_ALPHA_MODE_MASK		2
#define DIFFUSE_ALPHA_MODE_EMISSIVE 3

uniform float emissive_brightness;
uniform float display_gamma;

vec3 srgb_to_linear(vec3 cs)
{
	vec3 low_range = cs / vec3(12.92);
	vec3 high_range = pow((cs+vec3(0.055))/vec3(1.055), vec3(2.4));
	bvec3 lte = lessThanEqual(cs,vec3(0.04045));

#ifdef OLD_SELECT
	vec3 result;
	result.r = lte.r ? low_range.r : high_range.r;
	result.g = lte.g ? low_range.g : high_range.g;
	result.b = lte.b ? low_range.b : high_range.b;
    return result;
#else
	return mix(high_range, low_range, lte);
#endif

}

vec3 linear_to_srgb(vec3 cl)
{
	cl = clamp(cl, vec3(0), vec3(1));
	vec3 low_range  = cl * 12.92;
	vec3 high_range = 1.055 * pow(cl, vec3(0.41666)) - 0.055;
	bvec3 lt = lessThan(cl,vec3(0.0031308));

#ifdef OLD_SELECT
	vec3 result;
	result.r = lt.r ? low_range.r : high_range.r;
	result.g = lt.g ? low_range.g : high_range.g;
	result.b = lt.b ? low_range.b : high_range.b;
    return result;
#else
	return mix(high_range, low_range, lt);
#endif

}

#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)

#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_color;
#else
#define frag_color gl_FragColor
#endif

#if HAS_SUN_SHADOW

uniform sampler2DShadow shadowMap0;
uniform sampler2DShadow shadowMap1;
uniform sampler2DShadow shadowMap2;
uniform sampler2DShadow shadowMap3;

uniform mat4 shadow_matrix[6];
uniform vec4 shadow_clip;
uniform vec2 shadow_res;
uniform float shadow_bias;

float pcfShadow(sampler2DShadow shadowMap, vec4 stc)
{
	stc.xyz /= stc.w;
	stc.z += shadow_bias;
		
	stc.x = floor(stc.x*shadow_res.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here
	
	float cs = shadow2D(shadowMap, stc.xyz).x;
	float shadow = cs;
	
    shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x;
    shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x;
                       
    return shadow*0.2;
}

#endif

uniform samplerCube environmentMap;
uniform sampler2D	  lightFunc;

// Inputs
uniform vec4 morphFactor;
uniform vec3 camPosLocal;
//uniform vec4 camPosWorld;
uniform vec4 gamma;
uniform vec4 lightnorm;
uniform vec4 sunlight_color;
uniform vec4 ambient;
uniform vec4 blue_horizon;
uniform vec4 blue_density;
uniform float haze_horizon;
uniform float haze_density;
uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y;
uniform vec4 glow;
uniform float scene_light_strength;
uniform mat3 env_mat;
uniform mat3 ssao_effect_mat;

uniform vec3 sun_dir;
VARYING vec2 vary_fragcoord;

VARYING vec3 vary_position;

vec3 vary_PositionEye;

vec3 vary_SunlitColor;
vec3 vary_AmblitColor;
vec3 vary_AdditiveColor;
vec3 vary_AtmosAttenuation;

uniform mat4 inv_proj;
uniform vec2 screen_res;

uniform vec4 light_position[8];
uniform vec3 light_direction[8];
uniform vec3 light_attenuation[8]; 
uniform vec3 light_diffuse[8];

#ifdef WATER_FOG
uniform vec4 waterPlane;
uniform vec4 waterFogColor;
uniform float waterFogDensity;
uniform float waterFogKS;

vec4 applyWaterFogDeferred(vec3 pos, vec4 color)
{
	//normalize view vector
	vec3 view = normalize(pos);
	float es = -(dot(view, waterPlane.xyz));

	//find intersection point with water plane and eye vector
	
	//get eye depth
	float e0 = max(-waterPlane.w, 0.0);
	
	vec3 int_v = waterPlane.w > 0.0 ? view * waterPlane.w/es : vec3(0.0, 0.0, 0.0);
	
	//get object depth
	float depth = length(pos - int_v);
		
	//get "thickness" of water
	float l = max(depth, 0.1);

	float kd = waterFogDensity;
	float ks = waterFogKS;
	vec4 kc = waterFogColor;
	
	float F = 0.98;
	
	float t1 = -kd * pow(F, ks * e0);
	float t2 = kd + ks * es;
	float t3 = pow(F, t2*l) - 1.0;
	
	float L = min(t1/t2*t3, 1.0);
	
	float D = pow(0.98, l*kd);
	
	color.rgb = color.rgb * D + kc.rgb * L;
	color.a = kc.a + color.a;
	
	return color;
}
#endif

vec3 calcDirectionalLight(vec3 n, vec3 l)
{
	float a = max(dot(n,l),0.0);
	return vec3(a,a,a);
}


vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare)
{
	//get light vector
	vec3 lv = lp.xyz-v;
	
	//get distance
	float d = length(lv);
	
	float da = 1.0;

	vec3 col = vec3(0,0,0);

	if (d > 0.0 && la > 0.0 && fa > 0.0)
	{
		//normalize light vector
		lv = normalize(lv);
	
		//distance attenuation
		float dist = d/la;
		float dist_atten = clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0);
		dist_atten *= dist_atten;
		dist_atten *= 2.0;

		// spotlight coefficient.
		float spot = max(dot(-ln, lv), is_pointlight);
		da *= spot*spot; // GL_SPOT_EXPONENT=2

		//angular attenuation
		da *= max(dot(n, lv), 0.0);		
		
		float lit = max(da * dist_atten, 0.0);

		col = light_col*lit*diffuse;

		if (spec.a > 0.0)
		{
			//vec3 ref = dot(pos+lv, norm);
			vec3 h = normalize(lv+npos);
			float nh = dot(n, h);
			float nv = dot(n, npos);
			float vh = dot(npos, h);
			float sa = nh;
			float fres = pow(1 - dot(h, npos), 5)*0.4+0.5;

			float gtdenom = 2 * nh;
			float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh));
								
			if (nh > 0.0)
			{
				float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da);
				vec3 speccol = lit*scol*light_col.rgb*spec.rgb;
				col += speccol;

				float cur_glare = max(speccol.r, speccol.g);
				cur_glare = max(cur_glare, speccol.b);
				glare = max(glare, speccol.r);
				glare += max(cur_glare, 0.0);
				//col += spec.rgb;
			}
		}
	}

	return max(col, vec3(0.0,0.0,0.0));	

}

vec4 getPosition_d(vec2 pos_screen, float depth)
{
	vec2 sc = pos_screen.xy*2.0;
	sc /= screen_res;
	sc -= vec2(1.0,1.0);
	vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
	vec4 pos = inv_proj * ndc;
	pos /= pos.w;
	pos.w = 1.0;
	return pos;
}

#ifndef WATER_FOG
vec3 getPositionEye()
{
	return vary_PositionEye;
}
#endif

vec3 getSunlitColor()
{
	return vary_SunlitColor;
}
vec3 getAmblitColor()
{
	return vary_AmblitColor;
}
vec3 getAdditiveColor()
{
	return vary_AdditiveColor;
}
vec3 getAtmosAttenuation()
{
	return vary_AtmosAttenuation;
}

void setPositionEye(vec3 v)
{
	vary_PositionEye = v;
}

void setSunlitColor(vec3 v)
{
	vary_SunlitColor = v;
}

void setAmblitColor(vec3 v)
{
	vary_AmblitColor = v;
}

void setAdditiveColor(vec3 v)
{
	vary_AdditiveColor = v;
}

void setAtmosAttenuation(vec3 v)
{
	vary_AtmosAttenuation = v;
}

void calcAtmospherics(vec3 inPositionEye, float ambFactor) {

	vec3 P = inPositionEye;
	setPositionEye(P);
	
	vec3 tmpLightnorm = lightnorm.xyz;

	vec3 Pn = normalize(P);
	float Plen = length(P);

	vec4 temp1 = vec4(0);
	vec3 temp2 = vec3(0);
	vec4 blue_weight;
	vec4 haze_weight;
	vec4 sunlight = sunlight_color;
	vec4 light_atten;

	//sunlight attenuation effect (hue and brightness) due to atmosphere
	//this is used later for sunlight modulation at various altitudes
	light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
		//I had thought blue_density and haze_density should have equal weighting,
		//but attenuation due to haze_density tends to seem too strong

	temp1 = blue_density + vec4(haze_density);
	blue_weight = blue_density / temp1;
	haze_weight = vec4(haze_density) / temp1;

	//(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain)
	temp2.y = max(0.0, tmpLightnorm.y);
	temp2.y = 1. / temp2.y;
	sunlight *= exp( - light_atten * temp2.y);

	// main atmospheric scattering line integral
	temp2.z = Plen * density_multiplier;

	// Transparency (-> temp1)
	// ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati
	// compiler gets confused.
	temp1 = exp(-temp1 * temp2.z * distance_multiplier);

	//final atmosphere attenuation factor
	setAtmosAttenuation(temp1.rgb);
	
	//compute haze glow
	//(can use temp2.x as temp because we haven't used it yet)
	temp2.x = dot(Pn, tmpLightnorm.xyz);
	temp2.x = 1. - temp2.x;
		//temp2.x is 0 at the sun and increases away from sun
	temp2.x = max(temp2.x, .03);	//was glow.y
		//set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
	temp2.x *= glow.x;
		//higher glow.x gives dimmer glow (because next step is 1 / "angle")
	temp2.x = pow(temp2.x, glow.z);
		//glow.z should be negative, so we're doing a sort of (1 / "angle") function

	//add "minimum anti-solar illumination"
	temp2.x += .25;
	
	//increase ambient when there are more clouds
	vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5;
	
	/*  decrease value and saturation (that in HSV, not HSL) for occluded areas
	 * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html
	 * // The following line of code performs the equivalent of:
	 * float ambAlpha = tmpAmbient.a;
	 * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis
	 * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue);
	 * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha);
	 */
	tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a);

	//haze color
	setAdditiveColor(
		vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient)
	  + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x
		  + tmpAmbient)));

	//brightness of surface both sunlight and ambient
	setSunlitColor(vec3(sunlight * .5));
	setAmblitColor(vec3(tmpAmbient * .25));
	setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1));
}

vec3 atmosLighting(vec3 light)
{
	light *= getAtmosAttenuation().r;
	light += getAdditiveColor();
	return (2.0 * light);
}

vec3 atmosTransport(vec3 light) {
	light *= getAtmosAttenuation().r;
	light += getAdditiveColor() * 2.0;
	return light;
}
vec3 atmosGetDiffuseSunlightColor()
{
	return getSunlitColor();
}

vec3 scaleDownLight(vec3 light)
{
	return (light / vec3(scene_light_strength, scene_light_strength, scene_light_strength));
}

vec3 scaleUpLight(vec3 light)
{
	return (light * vec3(scene_light_strength, scene_light_strength, scene_light_strength));
}

vec3 atmosAmbient(vec3 light)
{
	return getAmblitColor() + (light * vec3(0.5f, 0.5f, 0.5f));
}

vec3 atmosAffectDirectionalLight(float lightIntensity)
{
	return getSunlitColor() * vec3(lightIntensity, lightIntensity, lightIntensity);
}

vec3 scaleSoftClip(vec3 light)
{
	//soft clip effect:
    vec3 zeroes = vec3(0.0f, 0.0f, 0.0f);
    vec3 ones   = vec3(1.0f, 1.0f, 1.0f);

	light = ones - clamp(light, zeroes, ones);
	light = ones - pow(light, gamma.xxx);

	return light;
}

vec3 fullbrightAtmosTransport(vec3 light) {
	float brightness = dot(light.rgb, vec3(0.33333));

	return mix(atmosTransport(light.rgb), light.rgb + getAdditiveColor().rgb, brightness * brightness);
}

vec3 fullbrightScaleSoftClip(vec3 light)
{
	//soft clip effect:
	return light;
}

#else
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_data[3];
#else
#define frag_data gl_FragData
#endif
#endif

uniform sampler2D diffuseMap;

#if HAS_NORMAL_MAP
uniform sampler2D bumpMap;
#endif

#if HAS_SPECULAR_MAP
uniform sampler2D specularMap;

VARYING vec2 vary_texcoord2;
#endif

uniform float env_intensity;
uniform vec4 specular_color;  // specular color RGB and specular exponent (glossiness) in alpha

#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
uniform float minimum_alpha;
#endif

#if HAS_NORMAL_MAP
VARYING vec3 vary_mat0;
VARYING vec3 vary_mat1;
VARYING vec3 vary_mat2;
VARYING vec2 vary_texcoord1;
#else
VARYING vec3 vary_normal;
#endif

VARYING vec4 vertex_color;
VARYING vec2 vary_texcoord0;

vec2 encode_normal(vec3 n)
{
	float f = sqrt(8 * n.z + 8);
	return n.xy / f + 0.5;
}

vec3 decode_normal (vec2 enc)
{
    vec2 fenc = enc*4-2;
    float f = dot(fenc,fenc);
    float g = sqrt(1-f/4);
    vec3 n;
    n.xy = fenc*g;
    n.z = 1-f/2;
    return n;
}

void main() 
{
	vec4 diffcol = texture2D(diffuseMap, vary_texcoord0.xy);
	diffcol.rgb *= vertex_color.rgb;

#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
	if (diffcol.a < minimum_alpha)
	{
		discard;
	}
#endif

#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
	vec3 gamma_diff = diffcol.rgb;
	diffcol.rgb = srgb_to_linear(diffcol.rgb);
#endif

#if HAS_SPECULAR_MAP
	vec4 spec = texture2D(specularMap, vary_texcoord2.xy);
	spec.rgb *= specular_color.rgb;
#else
	vec4 spec = vec4(specular_color.rgb, 1.0);
#endif

#if HAS_NORMAL_MAP
	vec4 norm = texture2D(bumpMap, vary_texcoord1.xy);

	norm.xyz = norm.xyz * 2 - 1;

	vec3 tnorm = vec3(dot(norm.xyz,vary_mat0),
			  dot(norm.xyz,vary_mat1),
			  dot(norm.xyz,vary_mat2));
#else
	vec4 norm = vec4(0,0,0,1.0);
	vec3 tnorm = vary_normal;
#endif

    norm.xyz = tnorm;
    norm.xyz = normalize(norm.xyz);

	vec2 abnormal	= encode_normal(norm.xyz);
		 norm.xyz   = decode_normal(abnormal.xy);

	vec4 final_color = diffcol;
	
#if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE)
	final_color.a = emissive_brightness;
#else
	final_color.a = max(final_color.a, emissive_brightness);
#endif

	vec4 final_specular = spec;
#if HAS_SPECULAR_MAP
	vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity * spec.a, 0.0);
	final_specular.a = specular_color.a * norm.a;
#else
	vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0);
	final_specular.a = specular_color.a;
#endif
	

#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
		//forward rendering, output just lit RGBA
	vec3 pos = vary_position;

#if HAS_SUN_SHADOW
	float shadow = 0.0;
	
	vec4 spos = vec4(pos,1.0);
		
	if (spos.z > -shadow_clip.w)
	{	
		vec4 lpos;
		
		vec4 near_split = shadow_clip*-0.75;
		vec4 far_split = shadow_clip*-1.25;
		vec4 transition_domain = near_split-far_split;
		float weight = 0.0;

		if (spos.z < near_split.z)
		{
			lpos = shadow_matrix[3]*spos;
			
			float w = 1.0;
			w -= max(spos.z-far_split.z, 0.0)/transition_domain.z;
			shadow += pcfShadow(shadowMap3, lpos)*w;
			weight += w;
			shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0);
		}

		if (spos.z < near_split.y && spos.z > far_split.z)
		{
			lpos = shadow_matrix[2]*spos;
			
			float w = 1.0;
			w -= max(spos.z-far_split.y, 0.0)/transition_domain.y;
			w -= max(near_split.z-spos.z, 0.0)/transition_domain.z;
			shadow += pcfShadow(shadowMap2, lpos)*w;
			weight += w;
		}

		if (spos.z < near_split.x && spos.z > far_split.y)
		{
			lpos = shadow_matrix[1]*spos;
			
			float w = 1.0;
			w -= max(spos.z-far_split.x, 0.0)/transition_domain.x;
			w -= max(near_split.y-spos.z, 0.0)/transition_domain.y;
			shadow += pcfShadow(shadowMap1, lpos)*w;
			weight += w;
		}

		if (spos.z > far_split.x)
		{
			lpos = shadow_matrix[0]*spos;
							
			float w = 1.0;
			w -= max(near_split.x-spos.z, 0.0)/transition_domain.x;
				
			shadow += pcfShadow(shadowMap0, lpos)*w;
			weight += w;
		}
		

		shadow /= weight;
	}
	else
	{
		shadow = 1.0;
	}
#else
	float shadow = 1.0;
#endif

	spec = final_specular;
	vec4 diffuse = final_color;
	float envIntensity = final_normal.z;

    vec3 col = vec3(0.0f,0.0f,0.0f);

	float bloom = 0.0;
	calcAtmospherics(pos.xyz, 1.0);
	
	vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz));

	float da =dot(norm.xyz, sun_dir.xyz);

    float final_da = da;
          final_da = min(final_da, shadow);
          //final_da = max(final_da, diffuse.a);
          final_da = max(final_da, 0.0f);
		  final_da = min(final_da, 1.0f);
		  final_da = pow(final_da, 1.0/1.3);

	col.rgb = atmosAmbient(col);
	
	float ambient = min(abs(da), 1.0);
	ambient *= 0.5;
	ambient *= ambient;
	ambient = (1.0-ambient);

	col.rgb *= ambient;

	col.rgb = col.rgb + atmosAffectDirectionalLight(final_da);

	col.rgb *= gamma_diff.rgb;
	

	float glare = 0.0;

	if (spec.a > 0.0) // specular reflection
	{
		// the old infinite-sky shiny reflection
		//
				
		float sa = dot(refnormpersp, sun_dir.xyz);
		vec3 dumbshiny = vary_SunlitColor*shadow*(texture2D(lightFunc, vec2(sa, spec.a)).r);
							
		// add the two types of shiny together
		vec3 spec_contrib = dumbshiny * spec.rgb;
		bloom = dot(spec_contrib, spec_contrib) / 6;

		glare = max(spec_contrib.r, spec_contrib.g);
		glare = max(glare, spec_contrib.b);

		col += spec_contrib;
	}


	col = mix(col.rgb, diffcol.rgb, diffuse.a);

	if (envIntensity > 0.0)
	{
		//add environmentmap
		vec3 env_vec = env_mat * refnormpersp;
		
		vec3 refcol = textureCube(environmentMap, env_vec).rgb;

		col = mix(col.rgb, refcol, 
			envIntensity);  

		float cur_glare = max(refcol.r, refcol.g);
		cur_glare = max(cur_glare, refcol.b);
		cur_glare *= envIntensity*4.0;
		glare += cur_glare;
	}

	//col = mix(atmosLighting(col), fullbrightAtmosTransport(col), diffuse.a);
	//col = mix(scaleSoftClip(col), fullbrightScaleSoftClip(col),  diffuse.a);

	col = atmosLighting(col);
	col = scaleSoftClip(col);

	//convert to linear space before adding local lights
	col = srgb_to_linear(col);

	vec3 npos = normalize(-pos.xyz);
			
	vec3 light = vec3(0,0,0);

 #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare);

		LIGHT_LOOP(1)
		LIGHT_LOOP(2)
		LIGHT_LOOP(3)
		LIGHT_LOOP(4)
		LIGHT_LOOP(5)
		LIGHT_LOOP(6)
		LIGHT_LOOP(7)

	col.rgb += light.rgb;

	glare = min(glare, 1.0);
	float al = max(diffcol.a,glare)*vertex_color.a;

	//convert to gamma space for display on screen
	col.rgb = linear_to_srgb(col.rgb);

#ifdef WATER_FOG
	vec4 temp = applyWaterFogDeferred(pos, vec4(col.rgb, al));
	col.rgb = temp.rgb;
	al = temp.a;
#endif

	frag_color.rgb = col.rgb;
	frag_color.a   = al;

#else
	frag_data[0] = final_color;
	frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent.
	frag_data[2] = final_normal; // XY = Normal.  Z = Env. intensity.
#endif
}