1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
/**
* @file materialF.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
/*[EXTRA_CODE_HERE]*/
#define DIFFUSE_ALPHA_MODE_IGNORE 0
#define DIFFUSE_ALPHA_MODE_BLEND 1
#define DIFFUSE_ALPHA_MODE_MASK 2
#define DIFFUSE_ALPHA_MODE_EMISSIVE 3
uniform float emissive_brightness;
uniform float display_gamma;
uniform int sun_up_factor;
#ifdef WATER_FOG
vec4 applyWaterFogView(vec3 pos, vec4 color);
#endif
vec3 atmosFragLighting(vec3 l, vec3 additive, vec3 atten);
vec3 scaleSoftClipFrag(vec3 l);
void calcAtmosphericVars(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten);
vec3 srgb_to_linear(vec3 cs);
vec3 linear_to_srgb(vec3 cs);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_color;
#else
#define frag_color gl_FragColor
#endif
#ifdef HAS_SUN_SHADOW
float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen);
#endif
uniform samplerCube environmentMap;
uniform sampler2D lightFunc;
// Inputs
uniform vec4 morphFactor;
uniform vec3 camPosLocal;
//uniform vec4 camPosWorld;
uniform vec4 gamma;
uniform mat3 env_mat;
uniform mat3 ssao_effect_mat;
uniform vec3 sun_dir;
uniform vec3 moon_dir;
VARYING vec2 vary_fragcoord;
VARYING vec3 vary_position;
uniform mat4 proj_mat;
uniform mat4 inv_proj;
uniform vec2 screen_res;
uniform vec4 light_position[8];
uniform vec3 light_direction[8];
uniform vec4 light_attenuation[8];
uniform vec3 light_diffuse[8];
float getAmbientClamp();
vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance)
{
//get light vector
vec3 lv = lp.xyz-v;
//get distance
float d = length(lv);
float da = 1.0;
vec3 col = vec3(0,0,0);
vec4 proj_tc = proj_mat * lp;
if (proj_tc.z < 0
|| proj_tc.z > 1
|| proj_tc.x < 0
|| proj_tc.x > 1
|| proj_tc.y < 0
|| proj_tc.y > 1)
{
return col;
}
if (d > 0.0)
{
//normalize light vector
lv = normalize(lv);
//distance attenuation
float dist = (la > 0) ? d/la : 1.0f;
fa += 1.0f;
float dist_atten = ( fa > 0) ? clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0) : 1.0f;
dist_atten *= dist_atten;
dist_atten *= 2.2f;
if (dist_atten <= 0)
{
return col;
}
// spotlight coefficient.
float spot = max(dot(-ln, lv), is_pointlight);
//angular attenuation
da = dot(n, lv);
da = clamp(da, 0.0, 1.0);
da *= spot*spot; // GL_SPOT_EXPONENT=2
float lit = max(da * dist_atten, 0.0);
float amb_da = ambiance;
if (da > 0)
{
col = light_col*lit*diffuse;
amb_da += (da*0.5 + 0.5) * ambiance;
amb_da += (da*da*0.5+0.5) * ambiance;
}
amb_da *= dist_atten;
amb_da = min(amb_da, 1.0f - lit);
col.rgb += amb_da * 0.25 * light_col * diffuse;
if (spec.a > 0.0)
{
//vec3 ref = dot(pos+lv, norm);
vec3 h = normalize(lv+npos);
float nh = dot(n, h);
float nv = dot(n, npos);
float vh = dot(npos, h);
float sa = nh;
float fres = pow(1 - dot(h, npos), 5)*0.4+0.5;
float gtdenom = 2 * nh;
float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh));
if (nh > 0.0)
{
float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da);
vec3 speccol = lit*scol*light_col.rgb*spec.rgb;
speccol = clamp(speccol, vec3(0), vec3(1));
col += speccol;
float cur_glare = max(speccol.r, speccol.g);
cur_glare = max(cur_glare, speccol.b);
glare = max(glare, speccol.r);
glare += max(cur_glare, 0.0);
}
}
}
return max(col, vec3(0.0,0.0,0.0));
}
#else
#ifdef DEFINE_GL_FRAGCOLOR
out vec4 frag_data[3];
#else
#define frag_data gl_FragData
#endif
#endif
uniform sampler2D diffuseMap;
#ifdef HAS_NORMAL_MAP
uniform sampler2D bumpMap;
#endif
#ifdef HAS_SPECULAR_MAP
uniform sampler2D specularMap;
VARYING vec2 vary_texcoord2;
#endif
uniform float env_intensity;
uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
uniform float minimum_alpha;
#endif
#ifdef HAS_NORMAL_MAP
VARYING vec3 vary_mat0;
VARYING vec3 vary_mat1;
VARYING vec3 vary_mat2;
VARYING vec2 vary_texcoord1;
#else
VARYING vec3 vary_normal;
#endif
VARYING vec4 vertex_color;
VARYING vec2 vary_texcoord0;
vec2 encode_normal(vec3 n);
void main()
{
vec2 pos_screen = vary_texcoord0.xy;
vec4 diffuse_linear = texture2D(diffuseMap, vary_texcoord0.xy);
vec4 diffuse_srgb = vec4(linear_to_srgb(diffuse_linear.rgb), diffuse_linear.a);
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK)
if (diffuse_linear.a < minimum_alpha)
{
discard;
}
#endif
diffuse_linear.rgb *= vertex_color.rgb;
#ifdef HAS_SPECULAR_MAP
vec4 spec = texture2D(specularMap, vary_texcoord2.xy);
spec.rgb *= specular_color.rgb;
#else
vec4 spec = vec4(specular_color.rgb, 1.0);
#endif
vec4 norm = vec4(0,0,0,1.0);
vec3 tnorm;
#ifdef HAS_NORMAL_MAP
norm = texture2D(bumpMap, vary_texcoord1.xy);
norm.xyz = norm.xyz * 2 - 1;
// tangent space norm
tnorm = vec3(dot(norm.xyz,vary_mat0),
dot(norm.xyz,vary_mat1),
dot(norm.xyz,vary_mat2));
#else
tnorm = vary_normal;
#endif
norm.xyz = tnorm;
norm.xyz = normalize(norm.xyz);
vec2 abnormal = encode_normal(norm.xyz);
vec4 final_color = diffuse_linear;
#if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE)
final_color.a = emissive_brightness;
#else
final_color.a = max(final_color.a, emissive_brightness);
#endif
vec4 final_specular = spec;
final_specular.a = specular_color.a;
#ifdef HAS_SPECULAR_MAP
final_specular.a *= norm.a;
#endif
vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0);
#ifdef HAS_SPECULAR_MAP
final_normal.z *= spec.a;
#endif
#if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND)
//forward rendering, output just lit RGBA
vec3 pos = vary_position;
float shadow = 1.0f;
#ifdef HAS_SUN_SHADOW
shadow = sampleDirectionalShadow(pos.xyz, norm.xyz, pos_screen);
#endif
spec = final_specular;
float envIntensity = final_normal.z;
vec3 color = vec3(0.0);
float bloom = 0.0;
vec3 sunlit;
vec3 amblit;
vec3 additive;
vec3 atten;
calcAtmosphericVars(pos.xyz, 1.0, sunlit, amblit, additive, atten);
vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz));
vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir;
float da = dot(normalize(norm.xyz), normalize(light_dir.xyz));
da = clamp(da, -1.0, 1.0);
float final_da = da;
final_da = clamp(final_da, 0.0, 1.0);
float ambient = da;
ambient *= 0.5;
ambient *= ambient;
//ambient = max(getAmbientClamp(), ambient);
ambient = 1.0 - ambient;
vec3 sun_contrib = min(final_da, shadow) * sunlit;
color.rgb = amblit;
color.rgb *= ambient;
vec3 post_ambient = color.rgb;
color.rgb += sun_contrib;
vec3 post_sunlight = color.rgb;
color.rgb *= diffuse_linear.rgb;
vec3 post_diffuse = color.rgb;
float glare = 0.0;
if (spec.a > 0.0) // specular reflection
{
vec3 npos = -normalize(pos.xyz);
//vec3 ref = dot(pos+lv, norm);
vec3 h = normalize(light_dir.xyz+npos);
float nh = dot(norm.xyz, h);
float nv = dot(norm.xyz, npos);
float vh = dot(npos, h);
float sa = nh;
float fres = pow(1 - dot(h, npos), 5)*0.4+0.5;
float gtdenom = 2 * nh;
float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh));
if (nh > 0.0)
{
float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da);
vec3 speccol = sun_contrib*scol*spec.rgb*0.25;
speccol = clamp(speccol, vec3(0), vec3(1));
bloom = dot(speccol, speccol);
color += speccol;
}
}
vec3 post_spec = color.rgb;
if (envIntensity > 0.0)
{
//add environmentmap
vec3 env_vec = env_mat * refnormpersp;
vec3 reflected_color = textureCube(environmentMap, env_vec).rgb;
color = mix(color.rgb, reflected_color, envIntensity);
float cur_glare = max(reflected_color.r, reflected_color.g);
cur_glare = max(cur_glare, reflected_color.b);
cur_glare *= envIntensity*4.0;
glare += cur_glare;
}
vec3 post_env = color.rgb;
color = atmosFragLighting(color, additive, atten);
color = scaleSoftClipFrag(color);
vec3 post_atmo = color.rgb;
//convert to linear space before adding local lights
color = srgb_to_linear(color);
vec3 npos = normalize(-pos.xyz);
vec3 light = vec3(0,0,0);
#define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse_linear.rgb, final_specular, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w);
LIGHT_LOOP(1)
LIGHT_LOOP(2)
LIGHT_LOOP(3)
LIGHT_LOOP(4)
LIGHT_LOOP(5)
LIGHT_LOOP(6)
LIGHT_LOOP(7)
glare = min(glare, 1.0);
float al = max(diffuse_linear.a,glare)*vertex_color.a;
color.rgb += light.rgb;
// (only) post-deferred needs inline gamma correction
color.rgb = linear_to_srgb(color.rgb);
//color.rgb = amblit;
//color.rgb = vec3(ambient);
//color.rgb = sunlit;
//color.rgb = post_ambient;
//color.rgb = vec3(final_da);
//color.rgb = sun_contrib;
//color.rgb = post_sunlight;
//color.rgb = diffuse_srgb.rgb;
//color.rgb = post_diffuse;
//color.rgb = post_spec;
//color.rgb = post_env;
//color.rgb = post_atmo;
#ifdef WATER_FOG
vec4 temp = applyWaterFogView(pos, vec4(color.rgb, al));
color.rgb = temp.rgb;
al = temp.a;
#endif
frag_color.rgb = color.rgb;
frag_color.a = al;
#else
// deferred path
frag_data[0] = final_color;
frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent.
frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity.
#endif
}
|