summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl
blob: 833f5d51b69e274f16c100adf4ff31f45b28cea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/** 
 * @file class1/deferred/deferredUtil.glsl
 *
 * $LicenseInfo:firstyear=2007&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2007, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

uniform sampler2DRect   normalMap;
uniform sampler2DRect   depthMap;
uniform sampler2D projectionMap; // rgba

// projected lighted params
uniform mat4 proj_mat; //screen space to light space projector
uniform vec3 proj_n; // projector normal
uniform vec3 proj_p; //plane projection is emitting from (in screen space)
uniform float proj_focus; // distance from plane to begin blurring
uniform float proj_lod  ; // (number of mips in proj map)
uniform float proj_range; // range between near clip and far clip plane of projection
uniform float proj_ambiance;

// light params
uniform vec3 color; // light_color
uniform float size; // light_size

uniform mat4 inv_proj;
uniform vec2 screen_res;

const float M_PI = 3.14159265;
const float ONE_OVER_PI = 0.3183098861;

vec3 srgb_to_linear(vec3 cs);

float calcLegacyDistanceAttenuation(float distance, float falloff)
{
    float dist_atten = 1.0 - clamp((distance + falloff)/(1.0 + falloff), 0.0, 1.0);
    dist_atten *= dist_atten;
    dist_atten *= 2.0;
    return dist_atten;
}

// In:
//   lv  unnormalized surface to light vector
//   n   normal of the surface
//   pos unnormalized camera to surface vector
// Out:
//   l   normalized surace to light vector
//   nl  diffuse angle
//   nh  specular angle
void calcHalfVectors(vec3 lv, vec3 n, vec3 v,
    out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist)
{
    l  = normalize(lv);
    h  = normalize(l + v);
    nh = clamp(dot(n, h), 0.0, 1.0);
    nl = clamp(dot(n, l), 0.0, 1.0);
    nv = clamp(dot(n, v), 0.0, 1.0);
    vh = clamp(dot(v, h), 0.0, 1.0);

    lightDist = length(lv);
}

// In:
//   light_center
//   pos
// Out:
//   dist
//   l_dist
//   lv
//   proj_tc  Projector Textue Coordinates
bool clipProjectedLightVars(vec3 light_center, vec3 pos, out float dist, out float l_dist, out vec3 lv, out vec4 proj_tc )
{
    lv = light_center - pos.xyz;
    dist = length(lv);
    bool clipped = (dist >= size);
    if ( !clipped )
    {
        dist /= size;

        l_dist = -dot(lv, proj_n);
        vec4 projected_point = (proj_mat * vec4(pos.xyz, 1.0));
        clipped = (projected_point.z < 0.0);
        projected_point.xyz /= projected_point.w;
        proj_tc = projected_point;
    }

    return clipped;
}

vec2 getScreenCoordinate(vec2 screenpos)
{
    vec2 sc = screenpos.xy * 2.0;
    if (screen_res.x > 0 && screen_res.y > 0)
    {
       sc /= screen_res;
    }
    return sc - vec2(1.0, 1.0);
}

// See: https://aras-p.info/texts/CompactNormalStorage.html
//      Method #4: Spheremap Transform, Lambert Azimuthal Equal-Area projection
vec3 getNorm(vec2 screenpos)
{
   vec2 enc = texture2DRect(normalMap, screenpos.xy).xy;
   vec2 fenc = enc*4-2;
   float f = dot(fenc,fenc);
   float g = sqrt(1-f/4);
   vec3 n;
   n.xy = fenc*g;
   n.z = 1-f/2;
   return n;
}

vec3 getNormalFromPacked(vec4 packedNormalEnvIntensityFlags)
{
   vec2 enc = packedNormalEnvIntensityFlags.xy;
   vec2 fenc = enc*4-2;
   float f = dot(fenc,fenc);
   float g = sqrt(1-f/4);
   vec3 n;
   n.xy = fenc*g;
   n.z = 1-f/2;
   return normalize(n); // TODO: Is this normalize redundant?
}

// return packedNormalEnvIntensityFlags since GBUFFER_FLAG_HAS_PBR needs .w
// See: C++: addDeferredAttachments(), GLSL: softenLightF
vec4 getNormalEnvIntensityFlags(vec2 screenpos, out vec3 n, out float envIntensity)
{
    vec4 packedNormalEnvIntensityFlags = texture2DRect(normalMap, screenpos.xy);
    n = getNormalFromPacked( packedNormalEnvIntensityFlags );
    envIntensity = packedNormalEnvIntensityFlags.z;
    return packedNormalEnvIntensityFlags;
}

float getDepth(vec2 pos_screen)
{
    float depth = texture2DRect(depthMap, pos_screen).r;
    return depth;
}

vec4 getTexture2DLodAmbient(vec2 tc, float lod)
{
    vec4 ret = texture2DLod(projectionMap, tc, lod);
    ret.rgb = srgb_to_linear(ret.rgb);

    vec2 dist = tc-vec2(0.5);
    float d = dot(dist,dist);
    ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0);

    return ret;
}

vec4 getTexture2DLodDiffuse(vec2 tc, float lod)
{
    vec4 ret = texture2DLod(projectionMap, tc, lod);
    ret.rgb = srgb_to_linear(ret.rgb);

    vec2 dist = vec2(0.5) - abs(tc-vec2(0.5));
    float det = min(lod/(proj_lod*0.5), 1.0);
    float d = min(dist.x, dist.y);
    float edge = 0.25*det;
    ret *= clamp(d/edge, 0.0, 1.0);

    return ret;
}

// lit     This is set by the caller: if (nl > 0.0) { lit = attenuation * nl * noise; }
// Uses:
//   color   Projected spotlight color
vec3 getProjectedLightAmbiance(float amb_da, float attenuation, float lit, float nl, float noise, vec2 projected_uv)
{
    vec4 amb_plcol = getTexture2DLodAmbient(projected_uv, proj_lod);
    vec3 amb_rgb   = amb_plcol.rgb * amb_plcol.a;

    amb_da += proj_ambiance;
    amb_da += (nl*nl*0.5+0.5) * proj_ambiance;
    amb_da *= attenuation * noise;
    amb_da = min(amb_da, 1.0-lit);

    return (amb_da * color.rgb * amb_rgb);
}

// Returns projected light in Linear
// Uses global spotlight color:
//  color
// NOTE: projected.a will be pre-multiplied with projected.rgb
vec3 getProjectedLightDiffuseColor(float light_distance, vec2 projected_uv)
{
    float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0);
    float lod = diff * proj_lod;
    vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod);

    return color.rgb * plcol.rgb * plcol.a;
}

vec4 texture2DLodSpecular(vec2 tc, float lod)
{
    vec4 ret = texture2DLod(projectionMap, tc, lod);
    ret.rgb = srgb_to_linear(ret.rgb);

    vec2 dist = vec2(0.5) - abs(tc-vec2(0.5));
    float det = min(lod/(proj_lod*0.5), 1.0);
    float d = min(dist.x, dist.y);
    d *= min(1, d * (proj_lod - lod)); // BUG? extra factor compared to diffuse causes N repeats
    float edge = 0.25*det;
    ret *= clamp(d/edge, 0.0, 1.0);

    return ret;
}

// See: clipProjectedLightVars()
vec3 getProjectedLightSpecularColor(vec3 pos, vec3 n )
{
    vec3 slit = vec3(0);
    vec3 ref = reflect(normalize(pos), n);

    //project from point pos in direction ref to plane proj_p, proj_n
    vec3 pdelta = proj_p-pos;
    float l_dist = length(pdelta);
    float ds = dot(ref, proj_n);
    if (ds < 0.0)
    {
        vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds;
        vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0));
        if (stc.z > 0.0)
        {
            stc /= stc.w;
            slit = getProjectedLightDiffuseColor( l_dist, stc.xy ); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod));
        }
    }
    return slit; // specular light
}

vec3 getProjectedLightSpecularColor(float light_distance, vec2 projected_uv)
{
    float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0);
    float lod = diff * proj_lod;
    vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod));

    return color.rgb * plcol.rgb * plcol.a;
}

vec4 getPosition(vec2 pos_screen)
{
    float depth = getDepth(pos_screen);
    vec2 sc = getScreenCoordinate(pos_screen);
    vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
    vec4 pos = inv_proj * ndc;
    pos /= pos.w;
    pos.w = 1.0;
    return pos;
}

vec4 getPositionWithDepth(vec2 pos_screen, float depth)
{
    vec2 sc = getScreenCoordinate(pos_screen);
    vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
    vec4 pos = inv_proj * ndc;
    pos /= pos.w;
    pos.w = 1.0;
    return pos;
}

vec2 getScreenXY(vec4 clip)
{
    vec4 ndc = clip;
         ndc.xyz /= clip.w;
    vec2 screen = vec2( ndc.xy * 0.5 );
         screen += 0.5;
         screen *= screen_res;
    return screen;
}

// Color utils

vec3 colorize_dot(float x)
{
    if (x > 0.0) return vec3( 0, x, 0 );
    if (x < 0.0) return vec3(-x, 0, 0 );
                 return vec3( 0, 0, 1 );
}

vec3 hue_to_rgb(float hue)
{
    if (hue > 1.0) return vec3(0.5);
    vec3 rgb = abs(hue * 6. - vec3(3, 2, 4)) * vec3(1, -1, -1) + vec3(-1, 2, 2);
    return clamp(rgb, 0.0, 1.0);
}

// PBR Utils

// ior Index of Refraction, normally 1.5
// returns reflect0
float calcF0(float ior)
{
    float f0 = (1.0 - ior) / (1.0 + ior);
    return f0 * f0;
}

vec3 fresnel(float vh, vec3 f0, vec3 f90 )
{
    float x  = 1.0 - abs(vh);
    float x2 = x*x;
    float x5 = x2*x2*x;
    vec3  fr = f0 + (f90 - f0)*x5;
    return fr;
}

vec3 fresnelSchlick( vec3 reflect0, vec3 reflect90, float vh)
{
    return reflect0 + (reflect90 - reflect0) * pow(clamp(1.0 - vh, 0.0, 1.0), 5.0);
}

// Approximate Environment BRDF
vec2 getGGXApprox( vec2 uv )
{
    // Reference: Physically Based Shading on Mobile
    // https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
    //     EnvBRDFApprox( vec3 SpecularColor, float Roughness, float NoV )
    float nv        = uv.x;
    float roughness = uv.y;

    const vec4  c0        = vec4( -1, -0.0275, -0.572, 0.022 );
    const vec4  c1        = vec4(  1,  0.0425,  1.04 , -0.04 );
          vec4  r         = roughness * c0 + c1;
          float a004      = min( r.x * r.x, exp2( -9.28 * nv ) ) * r.x + r.y;
          vec2  ScaleBias = vec2( -1.04, 1.04 ) * a004 + r.zw;
    return ScaleBias;
}

#define PBR_USE_GGX_APPROX 1
vec2 getGGX( vec2 brdfPoint )
{
#if PBR_USE_GGX_APPROX
    return getGGXApprox( brdfPoint);
#else
    return texture2D(GGXLUT, brdfPoint).rg;   // TODO: use GGXLUT
#endif
}


// Reference: float getRangeAttenuation(float range, float distance)
float getLightAttenuationPointSpot(float range, float distance)
{
#if 1
    return distance;
#else
    float range2 = pow(range, 2.0);

    // support negative range as unlimited
    if (range <= 0.0)
    {
        return 1.0 / range2;
    }

    return max(min(1.0 - pow(distance / range, 4.0), 1.0), 0.0) / range2;
#endif
}

vec3 getLightIntensityPoint(vec3 lightColor, float lightRange, float lightDistance)
{
    float  rangeAttenuation = getLightAttenuationPointSpot(lightRange, lightDistance);
    return rangeAttenuation * lightColor;
}

float getLightAttenuationSpot(vec3 spotDirection)
{
    return 1.0;
}

vec3 getLightIntensitySpot(vec3 lightColor, float lightRange, float lightDistance, vec3 v)
{
    float  spotAttenuation = getLightAttenuationSpot(-v);
    return spotAttenuation * getLightIntensityPoint( lightColor, lightRange, lightDistance );
}

// NOTE: This is different from the GGX texture
float D_GGX( float nh, float alphaRough )
{
    float rough2 = alphaRough * alphaRough;
    float f      = (nh * nh) * (rough2 - 1.0) + 1.0;
    return rough2 / (M_PI * f * f);
}

// NOTE: This is different from the GGX texture
// See:
//   Real Time Rendering, 4th Edition
//   Page 341
//   Equation 9.43
// Also see:
//   https://google.github.io/filament/Filament.md.html#materialsystem/specularbrdf/geometricshadowing(specularg)
//   4.4.2 Geometric Shadowing (specular G)
float V_GGX( float nl, float nv, float alphaRough )
{
#if 1
    // Note: When roughness is zero, has discontuinity in the bottom hemisphere
    float rough2 = alphaRough * alphaRough;
    float ggxv   = nl * sqrt(nv * nv * (1.0 - rough2) + rough2);
    float ggxl   = nv * sqrt(nl * nl * (1.0 - rough2) + rough2);

    float ggx    = ggxv + ggxl;
    if (ggx > 0.0)
    {
        return 0.5 / ggx;
    }
    return 0.0;
#else
    // See: smithVisibility_GGXCorrelated, V_SmithCorrelated, etc.
    float rough2 = alphaRough * alphaRough;
    float ggxv = nl * sqrt(nv * (nv - rough2 * nv) + rough2);
    float ggxl = nv * sqrt(nl * (nl - rough2 * nl) + rough2);
    return 0.5 / (ggxv + ggxl);
#endif

}

// NOTE: Assumes a hard-coded IOR = 1.5
void initMaterial( vec3 diffuse, vec3 packedORM, out float alphaRough, out vec3 c_diff, out vec3 reflect0, out vec3 reflect90, out float specWeight )
{
    float metal      = packedORM.b;
          c_diff     = mix(diffuse, vec3(0), metal);
    float IOR        = 1.5;                                // default Index Of Refraction 1.5 (dielectrics)
          reflect0   = vec3(0.04);                         // -> incidence reflectance 0.04
//        reflect0   = vec3(calcF0(IOR));
          reflect0   = mix(reflect0, diffuse, metal);      // reflect at 0 degrees
          reflect90  = vec3(1);                            // reflect at 90 degrees
          specWeight = 1.0;

    // When roughness is zero blender shows a tiny specular
    float perceptualRough = max(packedORM.g, 0.1);
          alphaRough      = perceptualRough * perceptualRough;
}

vec3 BRDFDiffuse(vec3 color)
{
    return color * ONE_OVER_PI;
}

vec3 BRDFLambertian( vec3 reflect0, vec3 reflect90, vec3 c_diff, float specWeight, float vh )
{
    return (1.0 - specWeight * fresnelSchlick( reflect0, reflect90, vh)) * BRDFDiffuse(c_diff);
}

vec3 BRDFSpecularGGX( vec3 reflect0, vec3 reflect90, float alphaRough, float specWeight, float vh, float nl, float nv, float nh )
{
    vec3 fresnel    = fresnelSchlick( reflect0, reflect90, vh ); // Fresnel
    float vis       = V_GGX( nl, nv, alphaRough );               // Visibility
    float d         = D_GGX( nh, alphaRough );                   // Distribution
    return specWeight * fresnel * vis * d;
}