1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/**
* @file class1/deferred/deferredUtil.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
uniform sampler2DRect normalMap;
uniform sampler2DRect depthMap;
uniform mat4 inv_proj;
uniform vec2 screen_res;
const float M_PI = 3.14159265;
// In:
// lv unnormalized surface to light vector
// n normal of the surface
// pos unnormalized camera to surface vector
// Out:
// l normalized surace to light vector
// nl diffuse angle
// nh specular angle
void calcHalfVectors(vec3 lv, vec3 n, vec3 v,
out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist)
{
l = normalize(lv);
h = normalize(l + v);
nh = clamp(dot(n, h), 0.0, 1.0);
nl = clamp(dot(n, l), 0.0, 1.0);
nv = clamp(dot(n, v), 0.0, 1.0);
vh = clamp(dot(v, h), 0.0, 1.0);
lightDist = length(lv);
}
vec2 getScreenCoordinate(vec2 screenpos)
{
vec2 sc = screenpos.xy * 2.0;
if (screen_res.x > 0 && screen_res.y > 0)
{
sc /= screen_res;
}
return sc - vec2(1.0, 1.0);
}
// See: https://aras-p.info/texts/CompactNormalStorage.html
// Method #4: Spheremap Transform, Lambert Azimuthal Equal-Area projection
vec3 getNorm(vec2 screenpos)
{
vec2 enc = texture2DRect(normalMap, screenpos.xy).xy;
vec2 fenc = enc*4-2;
float f = dot(fenc,fenc);
float g = sqrt(1-f/4);
vec3 n;
n.xy = fenc*g;
n.z = 1-f/2;
return n;
}
vec3 getNormalFromPacked(vec4 packedNormalEnvIntensityFlags)
{
vec2 enc = packedNormalEnvIntensityFlags.xy;
vec2 fenc = enc*4-2;
float f = dot(fenc,fenc);
float g = sqrt(1-f/4);
vec3 n;
n.xy = fenc*g;
n.z = 1-f/2;
return normalize(n); // TODO: Is this normalize redundant?
}
// return packedNormalEnvIntensityFlags since GBUFFER_FLAG_HAS_PBR needs .w
// See: C++: addDeferredAttachments(), GLSL: softenLightF
vec4 getNormalEnvIntensityFlags(vec2 screenpos, out vec3 n, out float envIntensity)
{
vec4 packedNormalEnvIntensityFlags = texture2DRect(normalMap, screenpos.xy);
n = getNormalFromPacked( packedNormalEnvIntensityFlags );
envIntensity = packedNormalEnvIntensityFlags.z;
return packedNormalEnvIntensityFlags;
}
float getDepth(vec2 pos_screen)
{
float depth = texture2DRect(depthMap, pos_screen).r;
return depth;
}
vec4 getPosition(vec2 pos_screen)
{
float depth = getDepth(pos_screen);
vec2 sc = getScreenCoordinate(pos_screen);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
vec4 getPositionWithDepth(vec2 pos_screen, float depth)
{
vec2 sc = getScreenCoordinate(pos_screen);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
vec2 getScreenXY(vec4 clip)
{
vec4 ndc = clip;
ndc.xyz /= clip.w;
vec2 screen = vec2( ndc.xy * 0.5 );
screen += 0.5;
screen *= screen_res;
return screen;
}
// PBR Utils
vec3 fresnelSchlick( vec3 reflect0, vec3 reflect90, float vh)
{
return reflect0 + (reflect90 - reflect0) * pow(clamp(1.0 - vh, 0.0, 1.0), 5.0);
}
// Approximate Environment BRDF
vec2 getGGXApprox( vec2 uv )
{
// Reference: Physically Based Shading on Mobile
// https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
// EnvBRDFApprox( vec3 SpecularColor, float Roughness, float NoV )
float nv = uv.x;
float roughness = uv.y;
const vec4 c0 = vec4( -1, -0.0275, -0.572, 0.022 );
const vec4 c1 = vec4( 1, 0.0425, 1.04 , -0.04 );
vec4 r = roughness * c0 + c1;
float a004 = min( r.x * r.x, exp2( -9.28 * nv ) ) * r.x + r.y;
vec2 ScaleBias = vec2( -1.04, 1.04 ) * a004 + r.zw;
return ScaleBias;
}
#define PBR_USE_GGX_APPROX 1
vec2 getGGX( vec2 brdfPoint )
{
#if PBR_USE_GGX_APPROX
return getGGXApprox( brdfPoint);
#else
return texture2D(GGXLUT, brdfPoint).rg; // TODO: use GGXLUT
#endif
}
// Reference: float getRangeAttenuation(float range, float distance)
float getLightAttenuationPointSpot(float range, float distance)
{
#if 1
return range;
#else
float range2 = pow(range, 2.0);
// support negative range as unlimited
if (range <= 0.0)
{
return 1.0 / range2;
}
return max(min(1.0 - pow(distance / range, 4.0), 1.0), 0.0) / range2;
#endif
}
vec3 getLightIntensityPoint(vec3 lightColor, float lightRange, float lightDistance)
{
float rangeAttenuation = getLightAttenuationPointSpot(lightRange, lightDistance);
return rangeAttenuation * lightColor;
}
float getLightAttenuationSpot(vec3 spotDirection)
{
return 1.0;
}
vec3 getLightIntensitySpot(vec3 lightColor, float lightRange, float lightDistance, vec3 v)
{
float spotAttenuation = getLightAttenuationSpot(-v);
return spotAttenuation * getLightIntensityPoint( lightColor, lightRange, lightDistance );
}
// NOTE: This is different from the GGX texture
float D_GGX( float nh, float alphaRough )
{
float rough2 = alphaRough * alphaRough;
float f = (nh * nh) * (rough2 - 1.0) + 1.0;
return rough2 / (M_PI * f * f);
}
// NOTE: This is different from the GGX texture
float V_GGX( float nl, float nv, float alphaRough )
{
float rough2 = alphaRough * alphaRough;
float ggxv = nl * sqrt(nv * nv * (1.0 - rough2) + rough2);
float ggxl = nv * sqrt(nl * nl * (1.0 - rough2) + rough2);
float ggx = ggxv + ggxl;
if (ggx > 0.0)
{
return 0.5 / ggx;
}
return 0.0;
}
void initMaterial( vec3 diffuse, vec3 packedORM, out float alphaRough, out vec3 c_diff, out vec3 reflect0, out vec3 reflect90, out float specWeight )
{
float metal = packedORM.b;
c_diff = mix(diffuse.rgb, vec3(0), metal);
float IOR = 1.5; // default Index Of Refraction 1.5 (dielectrics)
reflect0 = vec3(0.04); // -> incidence reflectance 0.04
reflect0 = mix( reflect0, diffuse.rgb, metal); // reflect at 0 degrees
reflect90 = vec3(1); // reflect at 90 degrees
specWeight = 1.0;
float perceptualRough = packedORM.g;
alphaRough = perceptualRough * perceptualRough;
}
vec3 BRDFLambertian( vec3 reflect0, vec3 reflect90, vec3 c_diff, float specWeight, float vh )
{
return (1.0 - specWeight * fresnelSchlick( reflect0, reflect90, vh)) * (c_diff / M_PI);
}
vec3 BRDFSpecularGGX( vec3 reflect0, vec3 reflect90, float alphaRough, float specWeight, float vh, float nl, float nv, float nh )
{
vec3 fresnel = fresnelSchlick( reflect0, reflect90, vh );
float vis = V_GGX( nl, nv, alphaRough );
float d = D_GGX( nh, alphaRough );
return specWeight * fresnel * vis * d;
}
|