1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
/**
* @file class1/deferred/aoUtil.glsl
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
uniform sampler2D noiseMap;
uniform sampler2D normalMap;
uniform sampler2D depthMap;
uniform float ssao_radius;
uniform float ssao_max_radius;
uniform float ssao_factor;
uniform float ssao_factor_inv;
uniform mat4 inv_proj;
uniform vec2 screen_res;
vec2 getScreenCoordinateAo(vec2 screenpos)
{
vec2 sc = screenpos.xy * 2.0;
return sc - vec2(1.0, 1.0);
}
float getDepthAo(vec2 pos_screen)
{
float depth = texture(depthMap, pos_screen).r;
return depth;
}
vec4 getPositionAo(vec2 pos_screen)
{
float depth = getDepthAo(pos_screen);
vec2 sc = getScreenCoordinateAo(pos_screen);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
}
vec2 getKern(int i)
{
vec2 kern[8];
// exponentially (^2) distant occlusion samples spread around origin
kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
return kern[i] / screen_res;
}
//calculate decreases in ambient lighting when crowded out (SSAO)
float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen)
{
float ret = 1.0;
vec3 pos_world = pos.xyz;
vec2 noise_reflect = texture(noiseMap, pos_screen.xy * (screen_res / 128.0)).xy;
float angle_hidden = 0.0;
float points = 0.0;
float scale = min(ssao_radius / -pos_world.z, ssao_max_radius);
// it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?)
for (int i = 0; i < 8; i++)
{
vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect);
vec3 samppos_world = getPositionAo(samppos_screen).xyz;
vec3 diff = pos_world - samppos_world;
float dist2 = dot(diff, diff);
// assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area
// --> solid angle shrinking by the square of distance
//radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2
//(k should vary inversely with # of samples, but this is taken care of later)
float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0;
angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv);
// 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"
float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0;
points = points + diffz_val;
}
angle_hidden = min(ssao_factor*angle_hidden/points, 1.0);
float points_val = (points > 0.0) ? 1.0 : 0.0;
ret = (1.0 - (points_val * angle_hidden));
ret = max(ret, 0.0);
return min(ret, 1.0);
}
|