summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class1/deferred/CASF.glsl
blob: abab71e5ce7b45db15234297c36816feae4a8caf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
/**
 * @file CASF.glsl
 *
 * $LicenseInfo:firstyear=2024&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2024, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

/*[EXTRA_CODE_HERE]*/

#ifndef A_CPU
#define A_GPU
#define A_GLSL
#define CAS_BETTER_DIAGONALS
#define CAS_SLOW

out vec4 frag_color;
in vec2 vary_fragcoord;

uniform sampler2D diffuseRect;
uniform vec2 out_screen_res;
uniform uvec4 cas_param_0;
uniform uvec4 cas_param_1;
uniform float gamma;

vec3 srgb_to_linear(vec3 cs);
vec3 linear_to_srgb(vec3 cl);
#endif

#ifndef SHADER_PORTABILITY
//==============================================================================================================================
//
//                                               [A] SHADER PORTABILITY 1.20210629
//
//==============================================================================================================================
// FidelityFX Super Resolution Sample
//
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
// MIT LICENSE
// ===========
// Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS").
// -----------
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// -----------
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// -----------
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
#define A_2PI 6.28318530718
#ifdef A_CPU
 // Supporting user defined overrides.
 #ifndef A_RESTRICT
  #define A_RESTRICT __restrict
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 #ifndef A_STATIC
  #define A_STATIC static
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 // Same types across CPU and GPU.
 // Predicate uses 32-bit integer (C friendly bool).
 typedef uint32_t AP1;
 typedef float AF1;
 typedef double AD1;
 typedef uint8_t AB1;
 typedef uint16_t AW1;
 typedef uint32_t AU1;
 typedef uint64_t AL1;
 typedef int8_t ASB1;
 typedef int16_t ASW1;
 typedef int32_t ASU1;
 typedef int64_t ASL1;
//------------------------------------------------------------------------------------------------------------------------------
 #define AD1_(a) ((AD1)(a))
 #define AF1_(a) ((AF1)(a))
 #define AL1_(a) ((AL1)(a))
 #define AU1_(a) ((AU1)(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define ASL1_(a) ((ASL1)(a))
 #define ASU1_(a) ((ASU1)(a))
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;}
//------------------------------------------------------------------------------------------------------------------------------
 #define A_TRUE 1
 #define A_FALSE 0
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                                       CPU/GPU PORTING
//
//------------------------------------------------------------------------------------------------------------------------------
// Get CPU and GPU to share all setup code, without duplicate code paths.
// This uses a lower-case prefix for special vector constructs.
//  - In C restrict pointers are used.
//  - In the shading language, in/inout/out arguments are used.
// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]).
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                     VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
//==============================================================================================================================
 #define retAD2 AD1 *A_RESTRICT
 #define retAD3 AD1 *A_RESTRICT
 #define retAD4 AD1 *A_RESTRICT
 #define retAF2 AF1 *A_RESTRICT
 #define retAF3 AF1 *A_RESTRICT
 #define retAF4 AF1 *A_RESTRICT
 #define retAL2 AL1 *A_RESTRICT
 #define retAL3 AL1 *A_RESTRICT
 #define retAL4 AL1 *A_RESTRICT
 #define retAU2 AU1 *A_RESTRICT
 #define retAU3 AU1 *A_RESTRICT
 #define retAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
 #define inAD2 AD1 *A_RESTRICT
 #define inAD3 AD1 *A_RESTRICT
 #define inAD4 AD1 *A_RESTRICT
 #define inAF2 AF1 *A_RESTRICT
 #define inAF3 AF1 *A_RESTRICT
 #define inAF4 AF1 *A_RESTRICT
 #define inAL2 AL1 *A_RESTRICT
 #define inAL3 AL1 *A_RESTRICT
 #define inAL4 AL1 *A_RESTRICT
 #define inAU2 AU1 *A_RESTRICT
 #define inAU3 AU1 *A_RESTRICT
 #define inAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
 #define inoutAD2 AD1 *A_RESTRICT
 #define inoutAD3 AD1 *A_RESTRICT
 #define inoutAD4 AD1 *A_RESTRICT
 #define inoutAF2 AF1 *A_RESTRICT
 #define inoutAF3 AF1 *A_RESTRICT
 #define inoutAF4 AF1 *A_RESTRICT
 #define inoutAL2 AL1 *A_RESTRICT
 #define inoutAL3 AL1 *A_RESTRICT
 #define inoutAL4 AL1 *A_RESTRICT
 #define inoutAU2 AU1 *A_RESTRICT
 #define inoutAU3 AU1 *A_RESTRICT
 #define inoutAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
 #define outAD2 AD1 *A_RESTRICT
 #define outAD3 AD1 *A_RESTRICT
 #define outAD4 AD1 *A_RESTRICT
 #define outAF2 AF1 *A_RESTRICT
 #define outAF3 AF1 *A_RESTRICT
 #define outAF4 AF1 *A_RESTRICT
 #define outAL2 AL1 *A_RESTRICT
 #define outAL3 AL1 *A_RESTRICT
 #define outAL4 AL1 *A_RESTRICT
 #define outAU2 AU1 *A_RESTRICT
 #define outAU3 AU1 *A_RESTRICT
 #define outAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
 #define varAD2(x) AD1 x[2]
 #define varAD3(x) AD1 x[3]
 #define varAD4(x) AD1 x[4]
 #define varAF2(x) AF1 x[2]
 #define varAF3(x) AF1 x[3]
 #define varAF4(x) AF1 x[4]
 #define varAL2(x) AL1 x[2]
 #define varAL3(x) AL1 x[3]
 #define varAL4(x) AL1 x[4]
 #define varAU2(x) AU1 x[2]
 #define varAU3(x) AU1 x[3]
 #define varAU4(x) AU1 x[4]
//------------------------------------------------------------------------------------------------------------------------------
 #define initAD2(x,y) {x,y}
 #define initAD3(x,y,z) {x,y,z}
 #define initAD4(x,y,z,w) {x,y,z,w}
 #define initAF2(x,y) {x,y}
 #define initAF3(x,y,z) {x,y,z}
 #define initAF4(x,y,z,w) {x,y,z,w}
 #define initAL2(x,y) {x,y}
 #define initAL3(x,y,z) {x,y,z}
 #define initAL4(x,y,z,w) {x,y,z,w}
 #define initAU2(x,y) {x,y}
 #define initAU3(x,y,z) {x,y,z}
 #define initAU4(x,y,z,w) {x,y,z,w}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     SCALAR RETURN OPS
//------------------------------------------------------------------------------------------------------------------------------
// TODO
// ====
//  - Replace transcendentals with manual versions.
//==============================================================================================================================
 #ifdef A_GCC
  A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);}
  A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);}
  A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));}
  A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));}
 #else
  A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);}
  A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);}
  A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));}
  A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);}
  A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);}
 #else
  A_STATIC AD1 ACosD1(AD1 a){return cos(a);}
  A_STATIC AF1 ACosF1(AF1 a){return cosf(a);}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];}
 A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
 A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
 A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];}
 A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
 A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);}
  A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);}
 #else
  A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);}
  A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);}
  A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);}
 #else
  A_STATIC AD1 AFloorD1(AD1 a){return floor(a);}
  A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);}
 A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);}
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);}
  A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);}
 #else
  A_STATIC AD1 ALog2D1(AD1 a){return log2(a);}
  A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;}
 A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;}
 A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;}
 A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
 // These follow the convention that A integer types don't have signage, until they are operated on.
 A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;}
 A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;}
 A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;}
 A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;}
 A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;}
 A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;}
 A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));}
 A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));}
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);}
  A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);}
 #else
  A_STATIC AD1 ASinD1(AD1 a){return sin(a);}
  A_STATIC AF1 ASinF1(AF1 a){return sinf(a);}
 #endif
//------------------------------------------------------------------------------------------------------------------------------
 #ifdef A_GCC
  A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);}
  A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);}
 #else
  A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);}
  A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                               SCALAR RETURN OPS - DEPENDENT
//==============================================================================================================================
 A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));}
 A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);}
 A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));}
 A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));}
 A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));}
 A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                         VECTOR OPS
//------------------------------------------------------------------------------------------------------------------------------
// These are added as needed for production or prototyping, so not necessarily a complete set.
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
//==============================================================================================================================
 A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;}
 A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;}
 A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;}
 A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;}
 A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
 A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
 A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
 A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
 A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
 A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
 A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
 A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
 A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
//==============================================================================================================================
 A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;}
 A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
 A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;}
 A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
 A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
//==============================================================================================================================
 A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;}
 A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;}
 A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;}
 A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;}
 A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;}
//==============================================================================================================================
 A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;}
 A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;}
 A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;}
 A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;}
 A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;}
 A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;}
 A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;}
 A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;}
 A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;}
 A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;}
 A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;}
 A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;}
 A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
 A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
 A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
 A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
 A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
//==============================================================================================================================
 A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
 A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
 A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
 A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
 A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
//==============================================================================================================================
 A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;}
 A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
 A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;}
 A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
 A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
//==============================================================================================================================
 A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;}
 A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;}
 A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;}
 A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;}
 A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     HALF FLOAT PACKING
//==============================================================================================================================
 // Convert float to half (in lower 16-bits of output).
 // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
 // Supports denormals.
 // Conversion rules are to make computations possibly "safer" on the GPU,
 //  -INF & -NaN -> -65504
 //  +INF & +NaN -> +65504
 A_STATIC AU1 AU1_AH1_AF1(AF1 f){
  static AW1 base[512]={
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
   0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100,
   0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00,
   0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
   0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100,
   0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00,
   0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
   0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff};
  static AB1 shift[512]={
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
   0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
   0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
   0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
   0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
   0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18};
  union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);}
//------------------------------------------------------------------------------------------------------------------------------
 // Used to output packed constant.
 A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);}
#endif
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                            GLSL
//==============================================================================================================================
#if defined(A_GLSL) && defined(A_GPU)
 #ifndef A_SKIP_EXT
  #ifdef A_LONG
   #extension GL_ARB_gpu_shader_int64:require
   #extension GL_NV_shader_atomic_int64:require
  #endif
//------------------------------------------------------------------------------------------------------------------------------
  #ifdef A_WAVE
   #extension GL_KHR_shader_subgroup_arithmetic:require
   #extension GL_KHR_shader_subgroup_ballot:require
   #extension GL_KHR_shader_subgroup_quad:require
   #extension GL_KHR_shader_subgroup_shuffle:require
  #endif
 #endif
//==============================================================================================================================
 #define AP1 bool
 #define AP2 bvec2
 #define AP3 bvec3
 #define AP4 bvec4
//------------------------------------------------------------------------------------------------------------------------------
 #define AF1 float
 #define AF2 vec2
 #define AF3 vec3
 #define AF4 vec4
//------------------------------------------------------------------------------------------------------------------------------
 #define AU1 uint
 #define AU2 uvec2
 #define AU3 uvec3
 #define AU4 uvec4
//------------------------------------------------------------------------------------------------------------------------------
 #define ASU1 int
 #define ASU2 ivec2
 #define ASU3 ivec3
 #define ASU4 ivec4
//==============================================================================================================================
 #define AF1_AU1(x) uintBitsToFloat(AU1(x))
 #define AF2_AU2(x) uintBitsToFloat(AU2(x))
 #define AF3_AU3(x) uintBitsToFloat(AU3(x))
 #define AF4_AU4(x) uintBitsToFloat(AU4(x))
//------------------------------------------------------------------------------------------------------------------------------
 #define AU1_AF1(x) floatBitsToUint(AF1(x))
 #define AU2_AF2(x) floatBitsToUint(AF2(x))
 #define AU3_AF3(x) floatBitsToUint(AF3(x))
 #define AU4_AF4(x) floatBitsToUint(AF4(x))
//==============================================================================================================================
 AF1 AF1_x(AF1 a){return AF1(a);}
 AF2 AF2_x(AF1 a){return AF2(a,a);}
 AF3 AF3_x(AF1 a){return AF3(a,a,a);}
 AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
 #define AF1_(a) AF1_x(AF1(a))
 #define AF2_(a) AF2_x(AF1(a))
 #define AF3_(a) AF3_x(AF1(a))
 #define AF4_(a) AF4_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AU1_x(AU1 a){return AU1(a);}
 AU2 AU2_x(AU1 a){return AU2(a,a);}
 AU3 AU3_x(AU1 a){return AU3(a,a,a);}
 AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
 #define AU1_(a) AU1_x(AU1(a))
 #define AU2_(a) AU2_x(AU1(a))
 #define AU3_(a) AU3_x(AU1(a))
 #define AU4_(a) AU4_x(AU1(a))
//==============================================================================================================================
 AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
 AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
 AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
 AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));}
 AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
 // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate.
 AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));}
//------------------------------------------------------------------------------------------------------------------------------
 // V_MED3_F32.
 AF1 AClampF1(AF1 x,AF1 n,AF1 m){return clamp(x,n,m);}
 AF2 AClampF2(AF2 x,AF2 n,AF2 m){return clamp(x,n,m);}
 AF3 AClampF3(AF3 x,AF3 n,AF3 m){return clamp(x,n,m);}
 AF4 AClampF4(AF4 x,AF4 n,AF4 m){return clamp(x,n,m);}
//------------------------------------------------------------------------------------------------------------------------------
 // V_FRACT_F32 (note DX frac() is different).
 AF1 AFractF1(AF1 x){return fract(x);}
 AF2 AFractF2(AF2 x){return fract(x);}
 AF3 AFractF3(AF3 x){return fract(x);}
 AF4 AFractF4(AF4 x){return fract(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);}
 AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);}
 AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);}
 AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
 // V_MAX3_F32.
 AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
 AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
 AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
 AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
 AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
 AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
 AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
 AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
 AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
 AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
 AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
 AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
 AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
 // Clamp has an easier pattern match for med3 when some ordering is known.
 // V_MED3_F32.
 AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
 AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
 AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
 AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
//------------------------------------------------------------------------------------------------------------------------------
 // V_MIN3_F32.
 AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
 AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
 AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
 AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
 AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
 AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
 AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
 AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
 AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
 AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
 AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
 AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
 AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
 // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
 // V_COS_F32.
 AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
 AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
 AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
 AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
 // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
 // V_SIN_F32.
 AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
 AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
 AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
 AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;}
 AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;}
 AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;}
 AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);}
 AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);}
 AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);}
 AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));}
 AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));}
 AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));}
 AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
 AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
 AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
 AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                          GLSL BYTE
//==============================================================================================================================
 #ifdef A_BYTE
  #define AB1 uint8_t
  #define AB2 u8vec2
  #define AB3 u8vec3
  #define AB4 u8vec4
//------------------------------------------------------------------------------------------------------------------------------
  #define ASB1 int8_t
  #define ASB2 i8vec2
  #define ASB3 i8vec3
  #define ASB4 i8vec4
//------------------------------------------------------------------------------------------------------------------------------
  AB1 AB1_x(AB1 a){return AB1(a);}
  AB2 AB2_x(AB1 a){return AB2(a,a);}
  AB3 AB3_x(AB1 a){return AB3(a,a,a);}
  AB4 AB4_x(AB1 a){return AB4(a,a,a,a);}
  #define AB1_(a) AB1_x(AB1(a))
  #define AB2_(a) AB2_x(AB1(a))
  #define AB3_(a) AB3_x(AB1(a))
  #define AB4_(a) AB4_x(AB1(a))
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                         GLSL DOUBLE
//==============================================================================================================================
 #ifdef A_DUBL
  #define AD1 double
  #define AD2 dvec2
  #define AD3 dvec3
  #define AD4 dvec4
//------------------------------------------------------------------------------------------------------------------------------
  AD1 AD1_x(AD1 a){return AD1(a);}
  AD2 AD2_x(AD1 a){return AD2(a,a);}
  AD3 AD3_x(AD1 a){return AD3(a,a,a);}
  AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
  #define AD1_(a) AD1_x(AD1(a))
  #define AD2_(a) AD2_x(AD1(a))
  #define AD3_(a) AD3_x(AD1(a))
  #define AD4_(a) AD4_x(AD1(a))
//==============================================================================================================================
  AD1 AFractD1(AD1 x){return fract(x);}
  AD2 AFractD2(AD2 x){return fract(x);}
  AD3 AFractD3(AD3 x){return fract(x);}
  AD4 AFractD4(AD4 x){return fract(x);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);}
  AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);}
  AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);}
  AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;}
  AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;}
  AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;}
  AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);}
  AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);}
  AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);}
  AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));}
  AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));}
  AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));}
  AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                         GLSL LONG
//==============================================================================================================================
 #ifdef A_LONG
  #define AL1 uint64_t
  #define AL2 u64vec2
  #define AL3 u64vec3
  #define AL4 u64vec4
//------------------------------------------------------------------------------------------------------------------------------
  #define ASL1 int64_t
  #define ASL2 i64vec2
  #define ASL3 i64vec3
  #define ASL4 i64vec4
//------------------------------------------------------------------------------------------------------------------------------
  #define AL1_AU2(x) packUint2x32(AU2(x))
  #define AU2_AL1(x) unpackUint2x32(AL1(x))
//------------------------------------------------------------------------------------------------------------------------------
  AL1 AL1_x(AL1 a){return AL1(a);}
  AL2 AL2_x(AL1 a){return AL2(a,a);}
  AL3 AL3_x(AL1 a){return AL3(a,a,a);}
  AL4 AL4_x(AL1 a){return AL4(a,a,a,a);}
  #define AL1_(a) AL1_x(AL1(a))
  #define AL2_(a) AL2_x(AL1(a))
  #define AL3_(a) AL3_x(AL1(a))
  #define AL4_(a) AL4_x(AL1(a))
//==============================================================================================================================
  AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));}
  AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));}
  AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));}
  AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
  AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));}
  AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));}
  AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));}
  AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
  AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));}
  AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));}
  AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));}
  AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                      WAVE OPERATIONS
//==============================================================================================================================
 #ifdef A_WAVE
  // Where 'x' must be a compile time literal.
  AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);}
  AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);}
  AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);}
  AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);}
  AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);}
  AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);}
  AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);}
  AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);}
 #endif
//==============================================================================================================================
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
//                                                            HLSL
//
//
//==============================================================================================================================
#if defined(A_HLSL) && defined(A_GPU)
 #ifdef A_HLSL_6_2
  #define AP1 bool
  #define AP2 bool2
  #define AP3 bool3
  #define AP4 bool4
//------------------------------------------------------------------------------------------------------------------------------
  #define AF1 float32_t
  #define AF2 float32_t2
  #define AF3 float32_t3
  #define AF4 float32_t4
//------------------------------------------------------------------------------------------------------------------------------
  #define AU1 uint32_t
  #define AU2 uint32_t2
  #define AU3 uint32_t3
  #define AU4 uint32_t4
//------------------------------------------------------------------------------------------------------------------------------
  #define ASU1 int32_t
  #define ASU2 int32_t2
  #define ASU3 int32_t3
  #define ASU4 int32_t4
 #else
  #define AP1 bool
  #define AP2 bool2
  #define AP3 bool3
  #define AP4 bool4
//------------------------------------------------------------------------------------------------------------------------------
  #define AF1 float
  #define AF2 float2
  #define AF3 float3
  #define AF4 float4
//------------------------------------------------------------------------------------------------------------------------------
  #define AU1 uint
  #define AU2 uint2
  #define AU3 uint3
  #define AU4 uint4
//------------------------------------------------------------------------------------------------------------------------------
  #define ASU1 int
  #define ASU2 int2
  #define ASU3 int3
  #define ASU4 int4
 #endif
//==============================================================================================================================
 #define AF1_AU1(x) asfloat(AU1(x))
 #define AF2_AU2(x) asfloat(AU2(x))
 #define AF3_AU3(x) asfloat(AU3(x))
 #define AF4_AU4(x) asfloat(AU4(x))
//------------------------------------------------------------------------------------------------------------------------------
 #define AU1_AF1(x) asuint(AF1(x))
 #define AU2_AF2(x) asuint(AF2(x))
 #define AU3_AF3(x) asuint(AF3(x))
 #define AU4_AF4(x) asuint(AF4(x))
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);}
 #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);}
 #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a))
 #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x))
//------------------------------------------------------------------------------------------------------------------------------
 AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));}
 #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x))
//==============================================================================================================================
 AF1 AF1_x(AF1 a){return AF1(a);}
 AF2 AF2_x(AF1 a){return AF2(a,a);}
 AF3 AF3_x(AF1 a){return AF3(a,a,a);}
 AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
 #define AF1_(a) AF1_x(AF1(a))
 #define AF2_(a) AF2_x(AF1(a))
 #define AF3_(a) AF3_x(AF1(a))
 #define AF4_(a) AF4_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AU1_x(AU1 a){return AU1(a);}
 AU2 AU2_x(AU1 a){return AU2(a,a);}
 AU3 AU3_x(AU1 a){return AU3(a,a,a);}
 AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
 #define AU1_(a) AU1_x(AU1(a))
 #define AU2_(a) AU2_x(AU1(a))
 #define AU3_(a) AU3_x(AU1(a))
 #define AU4_(a) AU4_x(AU1(a))
//==============================================================================================================================
 AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
 AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
 AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
 AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<<bits)-1;return (src>>off)&mask;}
 AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
 AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<<bits)-1;return (ins&mask)|(src&(~mask));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AClampF1(AF1 x,AF1 n,AF1 m){return max(n,min(x,m));}
 AF2 AClampF2(AF2 x,AF2 n,AF2 m){return max(n,min(x,m));}
 AF3 AClampF3(AF3 x,AF3 n,AF3 m){return max(n,min(x,m));}
 AF4 AClampF4(AF4 x,AF4 n,AF4 m){return max(n,min(x,m));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AFractF1(AF1 x){return x-floor(x);}
 AF2 AFractF2(AF2 x){return x-floor(x);}
 AF3 AFractF3(AF3 x){return x-floor(x);}
 AF4 AFractF4(AF4 x){return x-floor(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);}
 AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);}
 AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);}
 AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
 AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
 AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
 AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
 AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
 AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
 AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
 AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
 AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
 AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
 AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
 AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
 AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
 AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
 AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
 AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
 AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
 AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
 AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
 AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
 AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
 AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
 AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
 AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
 AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
 AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
 AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
 AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
 AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
 AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
 AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
 AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
 AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
 AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ARcpF1(AF1 x){return rcp(x);}
 AF2 ARcpF2(AF2 x){return rcp(x);}
 AF3 ARcpF3(AF3 x){return rcp(x);}
 AF4 ARcpF4(AF4 x){return rcp(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ARsqF1(AF1 x){return rsqrt(x);}
 AF2 ARsqF2(AF2 x){return rsqrt(x);}
 AF3 ARsqF3(AF3 x){return rsqrt(x);}
 AF4 ARsqF4(AF4 x){return rsqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 ASatF1(AF1 x){return saturate(x);}
 AF2 ASatF2(AF2 x){return saturate(x);}
 AF3 ASatF3(AF3 x){return saturate(x);}
 AF4 ASatF4(AF4 x){return saturate(x);}
//------------------------------------------------------------------------------------------------------------------------------
 AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
 AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
 AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
 AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                          HLSL BYTE
//==============================================================================================================================
 #ifdef A_BYTE
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                         HLSL DOUBLE
//==============================================================================================================================
 #ifdef A_DUBL
  #ifdef A_HLSL_6_2
   #define AD1 float64_t
   #define AD2 float64_t2
   #define AD3 float64_t3
   #define AD4 float64_t4
  #else
   #define AD1 double
   #define AD2 double2
   #define AD3 double3
   #define AD4 double4
  #endif
//------------------------------------------------------------------------------------------------------------------------------
  AD1 AD1_x(AD1 a){return AD1(a);}
  AD2 AD2_x(AD1 a){return AD2(a,a);}
  AD3 AD3_x(AD1 a){return AD3(a,a,a);}
  AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
  #define AD1_(a) AD1_x(AD1(a))
  #define AD2_(a) AD2_x(AD1(a))
  #define AD3_(a) AD3_x(AD1(a))
  #define AD4_(a) AD4_x(AD1(a))
//==============================================================================================================================
  AD1 AFractD1(AD1 a){return a-floor(a);}
  AD2 AFractD2(AD2 a){return a-floor(a);}
  AD3 AFractD3(AD3 a){return a-floor(a);}
  AD4 AFractD4(AD4 a){return a-floor(a);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);}
  AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);}
  AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);}
  AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ARcpD1(AD1 x){return rcp(x);}
  AD2 ARcpD2(AD2 x){return rcp(x);}
  AD3 ARcpD3(AD3 x){return rcp(x);}
  AD4 ARcpD4(AD4 x){return rcp(x);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ARsqD1(AD1 x){return rsqrt(x);}
  AD2 ARsqD2(AD2 x){return rsqrt(x);}
  AD3 ARsqD3(AD3 x){return rsqrt(x);}
  AD4 ARsqD4(AD4 x){return rsqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
  AD1 ASatD1(AD1 x){return saturate(x);}
  AD2 ASatD2(AD2 x){return saturate(x);}
  AD3 ASatD3(AD3 x){return saturate(x);}
  AD4 ASatD4(AD4 x){return saturate(x);}
 #endif
//==============================================================================================================================
//                                                         HLSL WAVE
//==============================================================================================================================
 #ifdef A_WAVE
  // Where 'x' must be a compile time literal.
  AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
  AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
 #endif
//==============================================================================================================================
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
//                                                          GPU COMMON
//
//
//==============================================================================================================================
#ifdef A_GPU
 // Negative and positive infinity.
 #define A_INFP_F AF1_AU1(0x7f800000u)
 #define A_INFN_F AF1_AU1(0xff800000u)
//------------------------------------------------------------------------------------------------------------------------------
 // Copy sign from 's' to positive 'd'.
 AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));}
 AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));}
 AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));}
 AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));}
//------------------------------------------------------------------------------------------------------------------------------
 // Single operation to return (useful to create a mask to use in lerp for branch free logic),
 //  m=NaN := 0
 //  m>=0  := 0
 //  m<0   := 1
 // Uses the following useful floating point logic,
 //  saturate(+a*(-INF)==-INF) := 0
 //  saturate( 0*(-INF)== NaN) := 0
 //  saturate(-a*(-INF)==+INF) := 1
 AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));}
 AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));}
 AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));}
 AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));}
//------------------------------------------------------------------------------------------------------------------------------
 AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));}
 AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));}
 AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));}
 AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                [FIS] FLOAT INTEGER SORTABLE
//------------------------------------------------------------------------------------------------------------------------------
// Float to integer sortable.
//  - If sign bit=0, flip the sign bit (positives).
//  - If sign bit=1, flip all bits     (negatives).
// Integer sortable to float.
//  - If sign bit=1, flip the sign bit (positives).
//  - If sign bit=0, flip all bits     (negatives).
// Has nice side effects.
//  - Larger integers are more positive values.
//  - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
// Burns 3 ops for conversion {shift,or,xor}.
//==============================================================================================================================
 AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
 AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
//------------------------------------------------------------------------------------------------------------------------------
 // Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value).
 AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
 AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                               [BUC] BYTE UNSIGNED CONVERSION
//------------------------------------------------------------------------------------------------------------------------------
// Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation.
// Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively.
//------------------------------------------------------------------------------------------------------------------------------
// OPCODE NOTES
// ============
// GCN does not do UNORM or SNORM for bytes in opcodes.
//  - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float.
//  - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer).
// V_PERM_B32 does byte packing with ability to zero fill bytes as well.
//  - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo.
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops.
// ====   =====
//    0 : 0
//    1 : 1
//     ...
//  255 : 255
//      : 256 (just outside the encoding range)
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
// ====   =====
//    0 : 0
//    1 : 1/512
//    2 : 1/256
//     ...
//   64 : 1/8
//  128 : 1/4
//  255 : 255/512
//      : 1/2 (just outside the encoding range)
//------------------------------------------------------------------------------------------------------------------------------
// OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES
// ============================================
// r=ABuc0FromU1(i)
//   V_CVT_F32_UBYTE0 r,i
// --------------------------------------------
// r=ABuc0ToU1(d,i)
//   V_CVT_PKACCUM_U8_F32 r,i,0,d
// --------------------------------------------
// d=ABuc0FromU2(i)
//   Where 'k0' is an SGPR with 0x0E0A
//   Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits
//   V_PERM_B32 d,i.x,i.y,k0
//   V_PK_FMA_F16 d,d,k1.x,0
// --------------------------------------------
// r=ABuc0ToU2(d,i)
//   Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
//   Where 'k1' is an SGPR with 0x????
//   Where 'k2' is an SGPR with 0x????
//   V_PK_FMA_F16 i,i,k0.x,0
//   V_PERM_B32 r.x,i,i,k1
//   V_PERM_B32 r.y,i,i,k2
//==============================================================================================================================
 // Peak range for 32-bit and 16-bit operations.
 #define A_BUC_32 (255.0)
 #define A_BUC_16 (255.0/512.0)
//==============================================================================================================================
 #if 1
  // Designed to be one V_CVT_PKACCUM_U8_F32.
  // The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32.
  AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u)    )&(0x000000ffu));}
  AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));}
  AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));}
  AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));}
//------------------------------------------------------------------------------------------------------------------------------
  // Designed to be one V_CVT_F32_UBYTE*.
  AF1 ABuc0FromU1(AU1 i){return AF1((i    )&255u);}
  AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);}
  AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);}
  AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                 [BSC] BYTE SIGNED CONVERSION
//------------------------------------------------------------------------------------------------------------------------------
// Similar to [BUC].
// Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively.
//------------------------------------------------------------------------------------------------------------------------------
// ENCODING (without zero-based encoding)
// ========
//   0 = unused (can be used to mean something else)
//   1 = lowest value
// 128 = exact zero center (zero based encoding
// 255 = highest value
//------------------------------------------------------------------------------------------------------------------------------
// Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero).
// This is useful if there is a desire for cleared values to decode as zero.
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
// ====   =====
//    0 : -127/512 (unused)
//    1 : -126/512
//    2 : -125/512
//     ...
//  128 : 0
//     ...
//  255 : 127/512
//      : 1/4 (just outside the encoding range)
//==============================================================================================================================
 // Peak range for 32-bit and 16-bit operations.
 #define A_BSC_32 (127.0)
 #define A_BSC_16 (127.0/512.0)
//==============================================================================================================================
 #if 1
  AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u)    )&(0x000000ffu));}
  AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));}
  AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));}
  AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));}
//------------------------------------------------------------------------------------------------------------------------------
  AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u)    )&(0x000000ffu)))^0x00000080u;}
  AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;}
  AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;}
  AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 ABsc0FromU1(AU1 i){return AF1((i    )&255u)-128.0;}
  AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;}
  AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;}
  AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 ABsc0FromZbU1(AU1 i){return AF1(((i    )&255u)^0x80u)-128.0;}
  AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;}
  AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;}
  AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                    FLOAT APPROXIMATIONS
//------------------------------------------------------------------------------------------------------------------------------
// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN",
//  - Idea dates back to SGI, then to Quake 3, etc.
//  - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
//     - sqrt(x)=rsqrt(x)*x
//     - rcp(x)=rsqrt(x)*rsqrt(x) for positive x
//  - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
//------------------------------------------------------------------------------------------------------------------------------
// These below are from perhaps less complete searching for optimal.
// Used FP16 normal range for testing with +4096 32-bit step size for sampling error.
// So these match up well with the half approximations.
//==============================================================================================================================
 AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));}
 AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));}
 AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));}
 AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));}
 AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));}
 AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));}
 AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
 AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));}
 AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));}
 AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));}
 AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
 AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));}
 AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));}
 AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));}
 AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                    PQ APPROXIMATIONS
//------------------------------------------------------------------------------------------------------------------------------
// PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do
// PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%.
//==============================================================================================================================
// Helpers
 AF1 Quart(AF1 a) { a = a * a; return a * a;}
 AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; }
 AF2 Quart(AF2 a) { a = a * a; return a * a; }
 AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; }
 AF3 Quart(AF3 a) { a = a * a; return a * a; }
 AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; }
 AF4 Quart(AF4 a) { a = a * a; return a * a; }
 AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; }
 //------------------------------------------------------------------------------------------------------------------------------
 AF1 APrxPQToGamma2(AF1 a) { return Quart(a); }
 AF1 APrxPQToLinear(AF1 a) { return Oct(a); }
 AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); }
 AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
 AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); }
 AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); }
 AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
 AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); }
 //------------------------------------------------------------------------------------------------------------------------------
 AF2 APrxPQToGamma2(AF2 a) { return Quart(a); }
 AF2 APrxPQToLinear(AF2 a) { return Oct(a); }
 AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); }
 AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
 AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); }
 AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); }
 AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
 AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); }
 //------------------------------------------------------------------------------------------------------------------------------
 AF3 APrxPQToGamma2(AF3 a) { return Quart(a); }
 AF3 APrxPQToLinear(AF3 a) { return Oct(a); }
 AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); }
 AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
 AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); }
 AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); }
 AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
 AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); }
 //------------------------------------------------------------------------------------------------------------------------------
 AF4 APrxPQToGamma2(AF4 a) { return Quart(a); }
 AF4 APrxPQToLinear(AF4 a) { return Oct(a); }
 AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); }
 AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
 AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); }
 AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); }
 AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
 AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); }
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                    PARABOLIC SIN & COS
//------------------------------------------------------------------------------------------------------------------------------
// Approximate answers to transcendental questions.
//------------------------------------------------------------------------------------------------------------------------------
//==============================================================================================================================
 #if 1
  // Valid input range is {-1 to 1} representing {0 to 2 pi}.
  // Output range is {-1/4 to 1/4} representing {-1 to 1}.
  AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD.
  AF2 APSinF2(AF2 x){return x*abs(x)-x;}
  AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT
  AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);}
  AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     [ZOL] ZERO ONE LOGIC
//------------------------------------------------------------------------------------------------------------------------------
// Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit.
//------------------------------------------------------------------------------------------------------------------------------
// 0 := false
// 1 := true
//------------------------------------------------------------------------------------------------------------------------------
// AndNot(x,y)   -> !(x&y) .... One op.
// AndOr(x,y,z)  -> (x&y)|z ... One op.
// GtZero(x)     -> x>0.0 ..... One op.
// Sel(x,y,z)    -> x?y:z ..... Two ops, has no precision loss.
// Signed(x)     -> x<0.0 ..... One op.
// ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer.
//------------------------------------------------------------------------------------------------------------------------------
// OPTIMIZATION NOTES
// ==================
// - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'.
//   For example 'a.xy*k.xx+k.yy'.
//==============================================================================================================================
 #if 1
  AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);}
  AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);}
  AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);}
  AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
  AU1 AZolNotU1(AU1 x){return x^AU1_(1);}
  AU2 AZolNotU2(AU2 x){return x^AU2_(1);}
  AU3 AZolNotU3(AU3 x){return x^AU3_(1);}
  AU4 AZolNotU4(AU4 x){return x^AU4_(1);}
//------------------------------------------------------------------------------------------------------------------------------
  AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);}
  AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);}
  AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);}
  AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);}
//==============================================================================================================================
  AU1 AZolF1ToU1(AF1 x){return AU1(x);}
  AU2 AZolF2ToU2(AF2 x){return AU2(x);}
  AU3 AZolF3ToU3(AF3 x){return AU3(x);}
  AU4 AZolF4ToU4(AF4 x){return AU4(x);}
//------------------------------------------------------------------------------------------------------------------------------
  // 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled).
  AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);}
  AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);}
  AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);}
  AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolU1ToF1(AU1 x){return AF1(x);}
  AF2 AZolU2ToF2(AU2 x){return AF2(x);}
  AF3 AZolU3ToF3(AU3 x){return AF3(x);}
  AF4 AZolU4ToF4(AU4 x){return AF4(x);}
//==============================================================================================================================
  AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);}
  AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);}
  AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);}
  AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);}
  AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);}
  AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);}
  AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);}
  AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);}
  AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);}
  AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));}
  AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));}
  AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));}
  AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;}
  AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;}
  AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;}
  AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);}
  AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);}
  AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);}
  AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;}
  AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;}
  AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;}
  AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));}
  AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));}
  AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));}
  AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));}
  AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));}
  AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));}
  AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));}
 #endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                      COLOR CONVERSIONS
//------------------------------------------------------------------------------------------------------------------------------
// These are all linear to/from some other space (where 'linear' has been shortened out of the function name).
// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'.
// These are branch free implementations.
// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion.
//------------------------------------------------------------------------------------------------------------------------------
// TRANSFER FUNCTIONS
// ==================
// 709 ..... Rec709 used for some HDTVs
// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native
// Pq ...... PQ native for HDR10
// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type
// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations)
// Three ... Gamma 3.0, less fast, but good for HDR.
//------------------------------------------------------------------------------------------------------------------------------
// KEEPING TO SPEC
// ===============
// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
//  (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
//  (b.) For 8-bit  709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
// Also there is a slight step in the transition regions.
// Precision of the coefficients in the spec being the likely cause.
// Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store.
// This is to work around lack of hardware (typically only ROP does the conversion for free).
// To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free).
// So this header keeps with the spec.
// For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear.
// Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear.
//------------------------------------------------------------------------------------------------------------------------------
// FOR PQ
// ======
// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2.
// All constants are only specified to FP32 precision.
// External PQ source reference,
//  - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl
//------------------------------------------------------------------------------------------------------------------------------
// PACKED VERSIONS
// ===============
// These are the A*H2() functions.
// There is no PQ functions as FP16 seemed to not have enough precision for the conversion.
// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors.
// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least).
//------------------------------------------------------------------------------------------------------------------------------
// NOTES
// =====
// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case.
//==============================================================================================================================
 #if 1
  AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
   return clamp(j.x  ,c*j.y  ,pow(c,j.z  )*k.x  +k.y  );}
  AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
   return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
  AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
   return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
  // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma().
  AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));}
  AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));}
  AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302));
   return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));}
  AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302));
   return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));}
  AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302));
   return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
   return clamp(j.x  ,c*j.y  ,pow(c,j.z  )*k.x  +k.y  );}
  AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
   return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
  AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
   return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AToTwoF1(AF1 c){return sqrt(c);}
  AF2 AToTwoF2(AF2 c){return sqrt(c);}
  AF3 AToTwoF3(AF3 c){return sqrt(c);}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));}
  AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));}
  AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));}
 #endif
//==============================================================================================================================
 #if 1
  // Unfortunately median won't work here.
  AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
   return AZolSelF1(AZolSignedF1(c-j.x  ),c*j.y  ,pow(c*k.x  +k.y  ,j.z  ));}
  AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
   return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
  AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
   return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));}
  AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));}
  AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833));
   return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));}
  AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833));
   return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));}
  AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833));
   return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));}
//------------------------------------------------------------------------------------------------------------------------------
  // Unfortunately median won't work here.
  AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
   return AZolSelF1(AZolSignedF1(c-j.x  ),c*j.y  ,pow(c*k.x  +k.y  ,j.z  ));}
  AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
   return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
  AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
   return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AFromTwoF1(AF1 c){return c*c;}
  AF2 AFromTwoF2(AF2 c){return c*c;}
  AF3 AFromTwoF3(AF3 c){return c*c;}
//------------------------------------------------------------------------------------------------------------------------------
  AF1 AFromThreeF1(AF1 c){return c*c*c;}
  AF2 AFromThreeF2(AF2 c){return c*c*c;}
  AF3 AFromThreeF3(AF3 c){return c*c*c;}
 #endif
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                          CS REMAP
//==============================================================================================================================
 // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear.
 //  543210
 //  ======
 //  ..xxx.
 //  yy...y
 AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
//==============================================================================================================================
 // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions.
 //  543210
 //  ======
 //  .xx..x
 //  y..yy.
 // Details,
 //  LANE TO 8x8 MAPPING
 //  ===================
 //  00 01 08 09 10 11 18 19
 //  02 03 0a 0b 12 13 1a 1b
 //  04 05 0c 0d 14 15 1c 1d
 //  06 07 0e 0f 16 17 1e 1f
 //  20 21 28 29 30 31 38 39
 //  22 23 2a 2b 32 33 3a 3b
 //  24 25 2c 2d 34 35 3c 3d
 //  26 27 2e 2f 36 37 3e 3f
 AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
//==============================================================================================================================
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                                          REFERENCE
//
//------------------------------------------------------------------------------------------------------------------------------
// IEEE FLOAT RULES
// ================
//  - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1
//  - {+/-}0 * {+/-}INF = NaN
//  - -INF + (+INF) = NaN
//  - {+/-}0 / {+/-}0 = NaN
//  - {+/-}INF / {+/-}INF = NaN
//  - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN)
//  - 0 == -0
//  - 4/0 = +INF
//  - 4/-0 = -INF
//  - 4+INF = +INF
//  - 4-INF = -INF
//  - 4*(+INF) = +INF
//  - 4*(-INF) = -INF
//  - -4*(+INF) = -INF
//  - sqrt(+INF) = +INF
//------------------------------------------------------------------------------------------------------------------------------
// FP16 ENCODING
// =============
// fedcba9876543210
// ----------------
// ......mmmmmmmmmm  10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals)
// .eeeee..........  5-bit exponent
// .00000..........  denormals
// .00001..........  -14 exponent
// .11110..........   15 exponent
// .111110000000000  infinity
// .11111nnnnnnnnnn  NaN with n!=0
// s...............  sign
//------------------------------------------------------------------------------------------------------------------------------
// FP16/INT16 ALIASING DENORMAL
// ============================
// 11-bit unsigned integers alias with half float denormal/normal values,
//     1 = 2^(-24) = 1/16777216 ....................... first denormal value
//     2 = 2^(-23)
//   ...
//  1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value
//  1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers
//  2047 .............................................. last normal value that still maps to integers
// Scaling limits,
//  2^15 = 32768 ...................................... largest power of 2 scaling
// Largest pow2 conversion mapping is at *32768,
//     1 : 2^(-9) = 1/512
//     2 : 1/256
//     4 : 1/128
//     8 : 1/64
//    16 : 1/32
//    32 : 1/16
//    64 : 1/8
//   128 : 1/4
//   256 : 1/2
//   512 : 1
//  1024 : 2
//  2047 : a little less than 4
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
//                                                     GPU/CPU PORTABILITY
//
//
//------------------------------------------------------------------------------------------------------------------------------
// This is the GPU implementation.
// See the CPU implementation for docs.
//==============================================================================================================================
#ifdef A_GPU
 #define A_TRUE true
 #define A_FALSE false
 #define A_STATIC
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                     VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
//==============================================================================================================================
 #define retAD2 AD2
 #define retAD3 AD3
 #define retAD4 AD4
 #define retAF2 AF2
 #define retAF3 AF3
 #define retAF4 AF4
 #define retAL2 AL2
 #define retAL3 AL3
 #define retAL4 AL4
 #define retAU2 AU2
 #define retAU3 AU3
 #define retAU4 AU4
//------------------------------------------------------------------------------------------------------------------------------
 #define inAD2 in AD2
 #define inAD3 in AD3
 #define inAD4 in AD4
 #define inAF2 in AF2
 #define inAF3 in AF3
 #define inAF4 in AF4
 #define inAL2 in AL2
 #define inAL3 in AL3
 #define inAL4 in AL4
 #define inAU2 in AU2
 #define inAU3 in AU3
 #define inAU4 in AU4
//------------------------------------------------------------------------------------------------------------------------------
 #define inoutAD2 inout AD2
 #define inoutAD3 inout AD3
 #define inoutAD4 inout AD4
 #define inoutAF2 inout AF2
 #define inoutAF3 inout AF3
 #define inoutAF4 inout AF4
 #define inoutAL2 inout AL2
 #define inoutAL3 inout AL3
 #define inoutAL4 inout AL4
 #define inoutAU2 inout AU2
 #define inoutAU3 inout AU3
 #define inoutAU4 inout AU4
//------------------------------------------------------------------------------------------------------------------------------
 #define outAD2 out AD2
 #define outAD3 out AD3
 #define outAD4 out AD4
 #define outAF2 out AF2
 #define outAF3 out AF3
 #define outAF4 out AF4
 #define outAL2 out AL2
 #define outAL3 out AL3
 #define outAL4 out AL4
 #define outAU2 out AU2
 #define outAU3 out AU3
 #define outAU4 out AU4
//------------------------------------------------------------------------------------------------------------------------------
 #define varAD2(x) AD2 x
 #define varAD3(x) AD3 x
 #define varAD4(x) AD4 x
 #define varAF2(x) AF2 x
 #define varAF3(x) AF3 x
 #define varAF4(x) AF4 x
 #define varAL2(x) AL2 x
 #define varAL3(x) AL3 x
 #define varAL4(x) AL4 x
 #define varAU2(x) AU2 x
 #define varAU3(x) AU3 x
 #define varAU4(x) AU4 x
//------------------------------------------------------------------------------------------------------------------------------
 #define initAD2(x,y) AD2(x,y)
 #define initAD3(x,y,z) AD3(x,y,z)
 #define initAD4(x,y,z,w) AD4(x,y,z,w)
 #define initAF2(x,y) AF2(x,y)
 #define initAF3(x,y,z) AF3(x,y,z)
 #define initAF4(x,y,z,w) AF4(x,y,z,w)
 #define initAL2(x,y) AL2(x,y)
 #define initAL3(x,y,z) AL3(x,y,z)
 #define initAL4(x,y,z,w) AL4(x,y,z,w)
 #define initAU2(x,y) AU2(x,y)
 #define initAU3(x,y,z) AU3(x,y,z)
 #define initAU4(x,y,z,w) AU4(x,y,z,w)
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     SCALAR RETURN OPS
//==============================================================================================================================
 #define AAbsD1(a) abs(AD1(a))
 #define AAbsF1(a) abs(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define ACosD1(a) cos(AD1(a))
 #define ACosF1(a) cos(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define ADotD2(a,b) dot(AD2(a),AD2(b))
 #define ADotD3(a,b) dot(AD3(a),AD3(b))
 #define ADotD4(a,b) dot(AD4(a),AD4(b))
 #define ADotF2(a,b) dot(AF2(a),AF2(b))
 #define ADotF3(a,b) dot(AF3(a),AF3(b))
 #define ADotF4(a,b) dot(AF4(a),AF4(b))
//------------------------------------------------------------------------------------------------------------------------------
 #define AExp2D1(a) exp2(AD1(a))
 #define AExp2F1(a) exp2(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define AFloorD1(a) floor(AD1(a))
 #define AFloorF1(a) floor(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define ALog2D1(a) log2(AD1(a))
 #define ALog2F1(a) log2(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define AMaxD1(a,b) max(a,b)
 #define AMaxF1(a,b) max(a,b)
 #define AMaxL1(a,b) max(a,b)
 #define AMaxU1(a,b) max(a,b)
//------------------------------------------------------------------------------------------------------------------------------
 #define AMinD1(a,b) min(a,b)
 #define AMinF1(a,b) min(a,b)
 #define AMinL1(a,b) min(a,b)
 #define AMinU1(a,b) min(a,b)
//------------------------------------------------------------------------------------------------------------------------------
 #define ASinD1(a) sin(AD1(a))
 #define ASinF1(a) sin(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
 #define ASqrtD1(a) sqrt(AD1(a))
 #define ASqrtF1(a) sqrt(AF1(a))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                               SCALAR RETURN OPS - DEPENDENT
//==============================================================================================================================
 #define APowD1(a,b) pow(AD1(a),AF1(b))
 #define APowF1(a,b) pow(AF1(a),AF1(b))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                         VECTOR OPS
//------------------------------------------------------------------------------------------------------------------------------
// These are added as needed for production or prototyping, so not necessarily a complete set.
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
//==============================================================================================================================
 #ifdef A_DUBL
  AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;}
  AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;}
  AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;}
  AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;}
  AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;}
  AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;}
  AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;}
  AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;}
  AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;}
  AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;}
  AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;}
  AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;}
  AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;}
  AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;}
  AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;}
  AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;}
  AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;}
  AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;}
  AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;}
  AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;}
  AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;}
  AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;}
  AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
  AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;}
  AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;}
  AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;}
 #endif
//==============================================================================================================================
 AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;}
 AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;}
 AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;}
 AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;}
 AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;}
 AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;}
 AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;}
 AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;}
 AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;}
 AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;}
 AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;}
 AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;}
 AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;}
 AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;}
 AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;}
 AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;}
 AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;}
 AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;}
 AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;}
 AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;}
 AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;}
 AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;}
 AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
 AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;}
 AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;}
 AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;}
#endif

#endif

//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                 [CAS] FIDELITY FX - CONSTRAST ADAPTIVE SHARPENING 1.20190610
//
//==============================================================================================================================
// LICENSE
// =======
// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved.
// -------
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// -------
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// -------
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
#define CAS_AREA_LIMIT 4.0
//------------------------------------------------------------------------------------------------------------------------------
// Pass in output and input resolution in pixels.
// This returns true if CAS supports scaling in the given configuration.
AP1 CasSupportScaling(AF1 outX,AF1 outY,AF1 inX,AF1 inY){return ((outX*outY)*ARcpF1(inX*inY))<=CAS_AREA_LIMIT;}
//==============================================================================================================================
// Call to setup required constant values (works on CPU or GPU).
#ifndef A_GPU
A_STATIC void CasSetup(
 outAU4 const0,
 outAU4 const1,
 AF1 sharpness, // 0 := default (lower ringing), 1 := maximum (higest ringing)
 AF1 inputSizeInPixelsX,
 AF1 inputSizeInPixelsY,
 AF1 outputSizeInPixelsX,
 AF1 outputSizeInPixelsY){
  // Scaling terms.
  const0[0]=AU1_AF1(inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX));
  const0[1]=AU1_AF1(inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY));
  const0[2]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5));
  const0[3]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5));
  // Sharpness value.
  AF1 sharp=-ARcpF1(ALerpF1(8.0,5.0,ASatF1(sharpness)));
  varAF2(hSharp)=initAF2(sharp,0.0);
  const1[0]=AU1_AF1(sharp);
  const1[1]=AU1_AH2_AF2(hSharp);
  const1[2]=AU1_AF1(AF1_(8.0)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX));
  const1[3]=0;}
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     NON-PACKED VERSION
//==============================================================================================================================
#ifdef A_GPU
 AF3 CasLoad(ASU2 p) { return texelFetch(diffuseRect, p, 0).rgb; }
 void CasInput(inout AF1 r,inout AF1 g,inout AF1 b)
 {
 }

//------------------------------------------------------------------------------------------------------------------------------
 void CasFilter(
 out AF1 pixR, // Output values, non-vector so port between CasFilter() and CasFilterH() is easy.
 out AF1 pixG,
 out AF1 pixB,
 AU2 ip, // Integer pixel position in output.
 AU4 const0, // Constants generated by CasSetup().
 AU4 const1,
 AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize).
//------------------------------------------------------------------------------------------------------------------------------
  // Debug a checker pattern of on/off tiles for visual inspection.
  #ifdef CAS_DEBUG_CHECKER
   if((((ip.x^ip.y)>>8u)&1u)==0u){AF3 pix0=CasLoad(ASU2(ip));
    pixR=pix0.r;pixG=pix0.g;pixB=pix0.b;CasInput(pixR,pixG,pixB);return;}
  #endif
//------------------------------------------------------------------------------------------------------------------------------
  // No scaling algorithm uses minimal 3x3 pixel neighborhood.
  if(noScaling){
   // a b c
   // d e f
   // g h i
   ASU2 sp=ASU2(ip);
   AF3 a=CasLoad(sp+ASU2(-1,-1));
   AF3 b=CasLoad(sp+ASU2( 0,-1));
   AF3 c=CasLoad(sp+ASU2( 1,-1));
   AF3 d=CasLoad(sp+ASU2(-1, 0));
   AF3 e=CasLoad(sp);
   AF3 f=CasLoad(sp+ASU2( 1, 0));
   AF3 g=CasLoad(sp+ASU2(-1, 1));
   AF3 h=CasLoad(sp+ASU2( 0, 1));
   AF3 i=CasLoad(sp+ASU2( 1, 1));
   // Run optional input transform.
   CasInput(a.r,a.g,a.b);
   CasInput(b.r,b.g,b.b);
   CasInput(c.r,c.g,c.b);
   CasInput(d.r,d.g,d.b);
   CasInput(e.r,e.g,e.b);
   CasInput(f.r,f.g,f.b);
   CasInput(g.r,g.g,g.b);
   CasInput(h.r,h.g,h.b);
   CasInput(i.r,i.g,i.b);
   // Soft min and max.
   //  a b c             b
   //  d e f * 0.5  +  d e f * 0.5
   //  g h i             h
   // These are 2.0x bigger (factored out the extra multiply).
   AF1 mnR=AMin3F1(AMin3F1(d.r,e.r,f.r),b.r,h.r);
   AF1 mnG=AMin3F1(AMin3F1(d.g,e.g,f.g),b.g,h.g);
   AF1 mnB=AMin3F1(AMin3F1(d.b,e.b,f.b),b.b,h.b);
   #ifdef CAS_BETTER_DIAGONALS
    AF1 mnR2=AMin3F1(AMin3F1(mnR,a.r,c.r),g.r,i.r);
    AF1 mnG2=AMin3F1(AMin3F1(mnG,a.g,c.g),g.g,i.g);
    AF1 mnB2=AMin3F1(AMin3F1(mnB,a.b,c.b),g.b,i.b);
    mnR=mnR+mnR2;
    mnG=mnG+mnG2;
    mnB=mnB+mnB2;
   #endif
   AF1 mxR=AMax3F1(AMax3F1(d.r,e.r,f.r),b.r,h.r);
   AF1 mxG=AMax3F1(AMax3F1(d.g,e.g,f.g),b.g,h.g);
   AF1 mxB=AMax3F1(AMax3F1(d.b,e.b,f.b),b.b,h.b);
   #ifdef CAS_BETTER_DIAGONALS
    AF1 mxR2=AMax3F1(AMax3F1(mxR,a.r,c.r),g.r,i.r);
    AF1 mxG2=AMax3F1(AMax3F1(mxG,a.g,c.g),g.g,i.g);
    AF1 mxB2=AMax3F1(AMax3F1(mxB,a.b,c.b),g.b,i.b);
    mxR=mxR+mxR2;
    mxG=mxG+mxG2;
    mxB=mxB+mxB2;
   #endif
   // Smooth minimum distance to signal limit divided by smooth max.
   #ifdef CAS_GO_SLOWER
    AF1 rcpMR=ARcpF1(mxR);
    AF1 rcpMG=ARcpF1(mxG);
    AF1 rcpMB=ARcpF1(mxB);
   #else
    AF1 rcpMR=APrxLoRcpF1(mxR);
    AF1 rcpMG=APrxLoRcpF1(mxG);
    AF1 rcpMB=APrxLoRcpF1(mxB);
   #endif
   #ifdef CAS_BETTER_DIAGONALS
    AF1 ampR=ASatF1(min(mnR,AF1_(2.0)-mxR)*rcpMR);
    AF1 ampG=ASatF1(min(mnG,AF1_(2.0)-mxG)*rcpMG);
    AF1 ampB=ASatF1(min(mnB,AF1_(2.0)-mxB)*rcpMB);
   #else
    AF1 ampR=ASatF1(min(mnR,AF1_(1.0)-mxR)*rcpMR);
    AF1 ampG=ASatF1(min(mnG,AF1_(1.0)-mxG)*rcpMG);
    AF1 ampB=ASatF1(min(mnB,AF1_(1.0)-mxB)*rcpMB);
   #endif
   // Shaping amount of sharpening.
   #ifdef CAS_GO_SLOWER
    ampR=sqrt(ampR);
    ampG=sqrt(ampG);
    ampB=sqrt(ampB);
   #else
    ampR=APrxLoSqrtF1(ampR);
    ampG=APrxLoSqrtF1(ampG);
    ampB=APrxLoSqrtF1(ampB);
   #endif
   // Filter shape.
   //  0 w 0
   //  w 1 w
   //  0 w 0
   AF1 peak=AF1_AU1(const1.x);
   AF1 wR=ampR*peak;
   AF1 wG=ampG*peak;
   AF1 wB=ampB*peak;
   // Filter.
   #ifndef CAS_SLOW
    // Using green coef only, depending on dead code removal to strip out the extra overhead.
    #ifdef CAS_GO_SLOWER
     AF1 rcpWeight=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG);
    #else
     AF1 rcpWeight=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG);
    #endif
    pixR=ASatF1((b.r*wG+d.r*wG+f.r*wG+h.r*wG+e.r)*rcpWeight);
    pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeight);
    pixB=ASatF1((b.b*wG+d.b*wG+f.b*wG+h.b*wG+e.b)*rcpWeight);
   #else
    #ifdef CAS_GO_SLOWER
     AF1 rcpWeightR=ARcpF1(AF1_(1.0)+AF1_(4.0)*wR);
     AF1 rcpWeightG=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG);
     AF1 rcpWeightB=ARcpF1(AF1_(1.0)+AF1_(4.0)*wB);
    #else
     AF1 rcpWeightR=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wR);
     AF1 rcpWeightG=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG);
     AF1 rcpWeightB=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wB);
    #endif
    pixR=ASatF1((b.r*wR+d.r*wR+f.r*wR+h.r*wR+e.r)*rcpWeightR);
    pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeightG);
    pixB=ASatF1((b.b*wB+d.b*wB+f.b*wB+h.b*wB+e.b)*rcpWeightB);
   #endif
   return;}
//------------------------------------------------------------------------------------------------------------------------------
  // Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm.
  //  a b c d
  //  e f g h
  //  i j k l
  //  m n o p
  // Working these 4 results.
  //  +-----+-----+
  //  |     |     |
  //  |  f..|..g  |
  //  |  .  |  .  |
  //  +-----+-----+
  //  |  .  |  .  |
  //  |  j..|..k  |
  //  |     |     |
  //  +-----+-----+
  AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw);
  AF2 fp=floor(pp);
  pp-=fp;
  ASU2 sp=ASU2(fp);
  AF3 a=CasLoad(sp+ASU2(-1,-1));
  AF3 b=CasLoad(sp+ASU2( 0,-1));
  AF3 e=CasLoad(sp+ASU2(-1, 0));
  AF3 f=CasLoad(sp);
  AF3 c=CasLoad(sp+ASU2( 1,-1));
  AF3 d=CasLoad(sp+ASU2( 2,-1));
  AF3 g=CasLoad(sp+ASU2( 1, 0));
  AF3 h=CasLoad(sp+ASU2( 2, 0));
  AF3 i=CasLoad(sp+ASU2(-1, 1));
  AF3 j=CasLoad(sp+ASU2( 0, 1));
  AF3 m=CasLoad(sp+ASU2(-1, 2));
  AF3 n=CasLoad(sp+ASU2( 0, 2));
  AF3 k=CasLoad(sp+ASU2( 1, 1));
  AF3 l=CasLoad(sp+ASU2( 2, 1));
  AF3 o=CasLoad(sp+ASU2( 1, 2));
  AF3 p=CasLoad(sp+ASU2( 2, 2));
  // Run optional input transform.
  CasInput(a.r,a.g,a.b);
  CasInput(b.r,b.g,b.b);
  CasInput(c.r,c.g,c.b);
  CasInput(d.r,d.g,d.b);
  CasInput(e.r,e.g,e.b);
  CasInput(f.r,f.g,f.b);
  CasInput(g.r,g.g,g.b);
  CasInput(h.r,h.g,h.b);
  CasInput(i.r,i.g,i.b);
  CasInput(j.r,j.g,j.b);
  CasInput(k.r,k.g,k.b);
  CasInput(l.r,l.g,l.b);
  CasInput(m.r,m.g,m.b);
  CasInput(n.r,n.g,n.b);
  CasInput(o.r,o.g,o.b);
  CasInput(p.r,p.g,p.b);
  // Soft min and max.
  // These are 2.0x bigger (factored out the extra multiply).
  //  a b c             b
  //  e f g * 0.5  +  e f g * 0.5  [F]
  //  i j k             j
  AF1 mnfR=AMin3F1(AMin3F1(b.r,e.r,f.r),g.r,j.r);
  AF1 mnfG=AMin3F1(AMin3F1(b.g,e.g,f.g),g.g,j.g);
  AF1 mnfB=AMin3F1(AMin3F1(b.b,e.b,f.b),g.b,j.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mnfR2=AMin3F1(AMin3F1(mnfR,a.r,c.r),i.r,k.r);
   AF1 mnfG2=AMin3F1(AMin3F1(mnfG,a.g,c.g),i.g,k.g);
   AF1 mnfB2=AMin3F1(AMin3F1(mnfB,a.b,c.b),i.b,k.b);
   mnfR=mnfR+mnfR2;
   mnfG=mnfG+mnfG2;
   mnfB=mnfB+mnfB2;
  #endif
  AF1 mxfR=AMax3F1(AMax3F1(b.r,e.r,f.r),g.r,j.r);
  AF1 mxfG=AMax3F1(AMax3F1(b.g,e.g,f.g),g.g,j.g);
  AF1 mxfB=AMax3F1(AMax3F1(b.b,e.b,f.b),g.b,j.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mxfR2=AMax3F1(AMax3F1(mxfR,a.r,c.r),i.r,k.r);
   AF1 mxfG2=AMax3F1(AMax3F1(mxfG,a.g,c.g),i.g,k.g);
   AF1 mxfB2=AMax3F1(AMax3F1(mxfB,a.b,c.b),i.b,k.b);
   mxfR=mxfR+mxfR2;
   mxfG=mxfG+mxfG2;
   mxfB=mxfB+mxfB2;
  #endif
  //  b c d             c
  //  f g h * 0.5  +  f g h * 0.5  [G]
  //  j k l             k
  AF1 mngR=AMin3F1(AMin3F1(c.r,f.r,g.r),h.r,k.r);
  AF1 mngG=AMin3F1(AMin3F1(c.g,f.g,g.g),h.g,k.g);
  AF1 mngB=AMin3F1(AMin3F1(c.b,f.b,g.b),h.b,k.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mngR2=AMin3F1(AMin3F1(mngR,b.r,d.r),j.r,l.r);
   AF1 mngG2=AMin3F1(AMin3F1(mngG,b.g,d.g),j.g,l.g);
   AF1 mngB2=AMin3F1(AMin3F1(mngB,b.b,d.b),j.b,l.b);
   mngR=mngR+mngR2;
   mngG=mngG+mngG2;
   mngB=mngB+mngB2;
  #endif
  AF1 mxgR=AMax3F1(AMax3F1(c.r,f.r,g.r),h.r,k.r);
  AF1 mxgG=AMax3F1(AMax3F1(c.g,f.g,g.g),h.g,k.g);
  AF1 mxgB=AMax3F1(AMax3F1(c.b,f.b,g.b),h.b,k.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mxgR2=AMax3F1(AMax3F1(mxgR,b.r,d.r),j.r,l.r);
   AF1 mxgG2=AMax3F1(AMax3F1(mxgG,b.g,d.g),j.g,l.g);
   AF1 mxgB2=AMax3F1(AMax3F1(mxgB,b.b,d.b),j.b,l.b);
   mxgR=mxgR+mxgR2;
   mxgG=mxgG+mxgG2;
   mxgB=mxgB+mxgB2;
  #endif
  //  e f g             f
  //  i j k * 0.5  +  i j k * 0.5  [J]
  //  m n o             n
  AF1 mnjR=AMin3F1(AMin3F1(f.r,i.r,j.r),k.r,n.r);
  AF1 mnjG=AMin3F1(AMin3F1(f.g,i.g,j.g),k.g,n.g);
  AF1 mnjB=AMin3F1(AMin3F1(f.b,i.b,j.b),k.b,n.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mnjR2=AMin3F1(AMin3F1(mnjR,e.r,g.r),m.r,o.r);
   AF1 mnjG2=AMin3F1(AMin3F1(mnjG,e.g,g.g),m.g,o.g);
   AF1 mnjB2=AMin3F1(AMin3F1(mnjB,e.b,g.b),m.b,o.b);
   mnjR=mnjR+mnjR2;
   mnjG=mnjG+mnjG2;
   mnjB=mnjB+mnjB2;
  #endif
  AF1 mxjR=AMax3F1(AMax3F1(f.r,i.r,j.r),k.r,n.r);
  AF1 mxjG=AMax3F1(AMax3F1(f.g,i.g,j.g),k.g,n.g);
  AF1 mxjB=AMax3F1(AMax3F1(f.b,i.b,j.b),k.b,n.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mxjR2=AMax3F1(AMax3F1(mxjR,e.r,g.r),m.r,o.r);
   AF1 mxjG2=AMax3F1(AMax3F1(mxjG,e.g,g.g),m.g,o.g);
   AF1 mxjB2=AMax3F1(AMax3F1(mxjB,e.b,g.b),m.b,o.b);
   mxjR=mxjR+mxjR2;
   mxjG=mxjG+mxjG2;
   mxjB=mxjB+mxjB2;
  #endif
  //  f g h             g
  //  j k l * 0.5  +  j k l * 0.5  [K]
  //  n o p             o
  AF1 mnkR=AMin3F1(AMin3F1(g.r,j.r,k.r),l.r,o.r);
  AF1 mnkG=AMin3F1(AMin3F1(g.g,j.g,k.g),l.g,o.g);
  AF1 mnkB=AMin3F1(AMin3F1(g.b,j.b,k.b),l.b,o.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mnkR2=AMin3F1(AMin3F1(mnkR,f.r,h.r),n.r,p.r);
   AF1 mnkG2=AMin3F1(AMin3F1(mnkG,f.g,h.g),n.g,p.g);
   AF1 mnkB2=AMin3F1(AMin3F1(mnkB,f.b,h.b),n.b,p.b);
   mnkR=mnkR+mnkR2;
   mnkG=mnkG+mnkG2;
   mnkB=mnkB+mnkB2;
  #endif
  AF1 mxkR=AMax3F1(AMax3F1(g.r,j.r,k.r),l.r,o.r);
  AF1 mxkG=AMax3F1(AMax3F1(g.g,j.g,k.g),l.g,o.g);
  AF1 mxkB=AMax3F1(AMax3F1(g.b,j.b,k.b),l.b,o.b);
  #ifdef CAS_BETTER_DIAGONALS
   AF1 mxkR2=AMax3F1(AMax3F1(mxkR,f.r,h.r),n.r,p.r);
   AF1 mxkG2=AMax3F1(AMax3F1(mxkG,f.g,h.g),n.g,p.g);
   AF1 mxkB2=AMax3F1(AMax3F1(mxkB,f.b,h.b),n.b,p.b);
   mxkR=mxkR+mxkR2;
   mxkG=mxkG+mxkG2;
   mxkB=mxkB+mxkB2;
  #endif
  // Smooth minimum distance to signal limit divided by smooth max.
  #ifdef CAS_GO_SLOWER
   AF1 rcpMfR=ARcpF1(mxfR);
   AF1 rcpMfG=ARcpF1(mxfG);
   AF1 rcpMfB=ARcpF1(mxfB);
   AF1 rcpMgR=ARcpF1(mxgR);
   AF1 rcpMgG=ARcpF1(mxgG);
   AF1 rcpMgB=ARcpF1(mxgB);
   AF1 rcpMjR=ARcpF1(mxjR);
   AF1 rcpMjG=ARcpF1(mxjG);
   AF1 rcpMjB=ARcpF1(mxjB);
   AF1 rcpMkR=ARcpF1(mxkR);
   AF1 rcpMkG=ARcpF1(mxkG);
   AF1 rcpMkB=ARcpF1(mxkB);
  #else
   AF1 rcpMfR=APrxLoRcpF1(mxfR);
   AF1 rcpMfG=APrxLoRcpF1(mxfG);
   AF1 rcpMfB=APrxLoRcpF1(mxfB);
   AF1 rcpMgR=APrxLoRcpF1(mxgR);
   AF1 rcpMgG=APrxLoRcpF1(mxgG);
   AF1 rcpMgB=APrxLoRcpF1(mxgB);
   AF1 rcpMjR=APrxLoRcpF1(mxjR);
   AF1 rcpMjG=APrxLoRcpF1(mxjG);
   AF1 rcpMjB=APrxLoRcpF1(mxjB);
   AF1 rcpMkR=APrxLoRcpF1(mxkR);
   AF1 rcpMkG=APrxLoRcpF1(mxkG);
   AF1 rcpMkB=APrxLoRcpF1(mxkB);
  #endif
  #ifdef CAS_BETTER_DIAGONALS
   AF1 ampfR=ASatF1(min(mnfR,AF1_(2.0)-mxfR)*rcpMfR);
   AF1 ampfG=ASatF1(min(mnfG,AF1_(2.0)-mxfG)*rcpMfG);
   AF1 ampfB=ASatF1(min(mnfB,AF1_(2.0)-mxfB)*rcpMfB);
   AF1 ampgR=ASatF1(min(mngR,AF1_(2.0)-mxgR)*rcpMgR);
   AF1 ampgG=ASatF1(min(mngG,AF1_(2.0)-mxgG)*rcpMgG);
   AF1 ampgB=ASatF1(min(mngB,AF1_(2.0)-mxgB)*rcpMgB);
   AF1 ampjR=ASatF1(min(mnjR,AF1_(2.0)-mxjR)*rcpMjR);
   AF1 ampjG=ASatF1(min(mnjG,AF1_(2.0)-mxjG)*rcpMjG);
   AF1 ampjB=ASatF1(min(mnjB,AF1_(2.0)-mxjB)*rcpMjB);
   AF1 ampkR=ASatF1(min(mnkR,AF1_(2.0)-mxkR)*rcpMkR);
   AF1 ampkG=ASatF1(min(mnkG,AF1_(2.0)-mxkG)*rcpMkG);
   AF1 ampkB=ASatF1(min(mnkB,AF1_(2.0)-mxkB)*rcpMkB);
  #else
   AF1 ampfR=ASatF1(min(mnfR,AF1_(1.0)-mxfR)*rcpMfR);
   AF1 ampfG=ASatF1(min(mnfG,AF1_(1.0)-mxfG)*rcpMfG);
   AF1 ampfB=ASatF1(min(mnfB,AF1_(1.0)-mxfB)*rcpMfB);
   AF1 ampgR=ASatF1(min(mngR,AF1_(1.0)-mxgR)*rcpMgR);
   AF1 ampgG=ASatF1(min(mngG,AF1_(1.0)-mxgG)*rcpMgG);
   AF1 ampgB=ASatF1(min(mngB,AF1_(1.0)-mxgB)*rcpMgB);
   AF1 ampjR=ASatF1(min(mnjR,AF1_(1.0)-mxjR)*rcpMjR);
   AF1 ampjG=ASatF1(min(mnjG,AF1_(1.0)-mxjG)*rcpMjG);
   AF1 ampjB=ASatF1(min(mnjB,AF1_(1.0)-mxjB)*rcpMjB);
   AF1 ampkR=ASatF1(min(mnkR,AF1_(1.0)-mxkR)*rcpMkR);
   AF1 ampkG=ASatF1(min(mnkG,AF1_(1.0)-mxkG)*rcpMkG);
   AF1 ampkB=ASatF1(min(mnkB,AF1_(1.0)-mxkB)*rcpMkB);
  #endif
  // Shaping amount of sharpening.
  #ifdef CAS_GO_SLOWER
   ampfR=sqrt(ampfR);
   ampfG=sqrt(ampfG);
   ampfB=sqrt(ampfB);
   ampgR=sqrt(ampgR);
   ampgG=sqrt(ampgG);
   ampgB=sqrt(ampgB);
   ampjR=sqrt(ampjR);
   ampjG=sqrt(ampjG);
   ampjB=sqrt(ampjB);
   ampkR=sqrt(ampkR);
   ampkG=sqrt(ampkG);
   ampkB=sqrt(ampkB);
  #else
   ampfR=APrxLoSqrtF1(ampfR);
   ampfG=APrxLoSqrtF1(ampfG);
   ampfB=APrxLoSqrtF1(ampfB);
   ampgR=APrxLoSqrtF1(ampgR);
   ampgG=APrxLoSqrtF1(ampgG);
   ampgB=APrxLoSqrtF1(ampgB);
   ampjR=APrxLoSqrtF1(ampjR);
   ampjG=APrxLoSqrtF1(ampjG);
   ampjB=APrxLoSqrtF1(ampjB);
   ampkR=APrxLoSqrtF1(ampkR);
   ampkG=APrxLoSqrtF1(ampkG);
   ampkB=APrxLoSqrtF1(ampkB);
  #endif
  // Filter shape.
  //  0 w 0
  //  w 1 w
  //  0 w 0
  AF1 peak=AF1_AU1(const1.x);
  AF1 wfR=ampfR*peak;
  AF1 wfG=ampfG*peak;
  AF1 wfB=ampfB*peak;
  AF1 wgR=ampgR*peak;
  AF1 wgG=ampgG*peak;
  AF1 wgB=ampgB*peak;
  AF1 wjR=ampjR*peak;
  AF1 wjG=ampjG*peak;
  AF1 wjB=ampjB*peak;
  AF1 wkR=ampkR*peak;
  AF1 wkG=ampkG*peak;
  AF1 wkB=ampkB*peak;
  // Blend between 4 results.
  //  s t
  //  u v
  AF1 s=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y);
  AF1 t=           pp.x *(AF1_(1.0)-pp.y);
  AF1 u=(AF1_(1.0)-pp.x)*           pp.y ;
  AF1 v=           pp.x *           pp.y ;
  // Thin edges to hide bilinear interpolation (helps diagonals).
  AF1 thinB=1.0/32.0;
  #ifdef CAS_GO_SLOWER
   s*=ARcpF1(thinB+(mxfG-mnfG));
   t*=ARcpF1(thinB+(mxgG-mngG));
   u*=ARcpF1(thinB+(mxjG-mnjG));
   v*=ARcpF1(thinB+(mxkG-mnkG));
  #else
   s*=APrxLoRcpF1(thinB+(mxfG-mnfG));
   t*=APrxLoRcpF1(thinB+(mxgG-mngG));
   u*=APrxLoRcpF1(thinB+(mxjG-mnjG));
   v*=APrxLoRcpF1(thinB+(mxkG-mnkG));
  #endif
  // Final weighting.
  //    b c
  //  e f g h
  //  i j k l
  //    n o
  //  _____  _____  _____  _____
  //         fs        gt
  //
  //  _____  _____  _____  _____
  //  fs      s gt  fs  t     gt
  //         ju        kv
  //  _____  _____  _____  _____
  //         fs        gt
  //  ju      u kv  ju  v     kv
  //  _____  _____  _____  _____
  //
  //         ju        kv
  AF1 qbeR=wfR*s;
  AF1 qbeG=wfG*s;
  AF1 qbeB=wfB*s;
  AF1 qchR=wgR*t;
  AF1 qchG=wgG*t;
  AF1 qchB=wgB*t;
  AF1 qfR=wgR*t+wjR*u+s;
  AF1 qfG=wgG*t+wjG*u+s;
  AF1 qfB=wgB*t+wjB*u+s;
  AF1 qgR=wfR*s+wkR*v+t;
  AF1 qgG=wfG*s+wkG*v+t;
  AF1 qgB=wfB*s+wkB*v+t;
  AF1 qjR=wfR*s+wkR*v+u;
  AF1 qjG=wfG*s+wkG*v+u;
  AF1 qjB=wfB*s+wkB*v+u;
  AF1 qkR=wgR*t+wjR*u+v;
  AF1 qkG=wgG*t+wjG*u+v;
  AF1 qkB=wgB*t+wjB*u+v;
  AF1 qinR=wjR*u;
  AF1 qinG=wjG*u;
  AF1 qinB=wjB*u;
  AF1 qloR=wkR*v;
  AF1 qloG=wkG*v;
  AF1 qloB=wkB*v;
  // Filter.
  #ifndef CAS_SLOW
   // Using green coef only, depending on dead code removal to strip out the extra overhead.
   #ifdef CAS_GO_SLOWER
    AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
   #else
    AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
   #endif
   pixR=ASatF1((b.r*qbeG+e.r*qbeG+c.r*qchG+h.r*qchG+i.r*qinG+n.r*qinG+l.r*qloG+o.r*qloG+f.r*qfG+g.r*qgG+j.r*qjG+k.r*qkG)*rcpWG);
   pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG);
   pixB=ASatF1((b.b*qbeG+e.b*qbeG+c.b*qchG+h.b*qchG+i.b*qinG+n.b*qinG+l.b*qloG+o.b*qloG+f.b*qfG+g.b*qgG+j.b*qjG+k.b*qkG)*rcpWG);
  #else
   #ifdef CAS_GO_SLOWER
    AF1 rcpWR=ARcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR);
    AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
    AF1 rcpWB=ARcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB);
   #else
    AF1 rcpWR=APrxMedRcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR);
    AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG);
    AF1 rcpWB=APrxMedRcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB);
   #endif
   pixR=ASatF1((b.r*qbeR+e.r*qbeR+c.r*qchR+h.r*qchR+i.r*qinR+n.r*qinR+l.r*qloR+o.r*qloR+f.r*qfR+g.r*qgR+j.r*qjR+k.r*qkR)*rcpWR);
   pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG);
   pixB=ASatF1((b.b*qbeB+e.b*qbeB+c.b*qchB+h.b*qchB+i.b*qinB+n.b*qinB+l.b*qloB+o.b*qloB+f.b*qfB+g.b*qgB+j.b*qjB+k.b*qkB)*rcpWB);
  #endif
 }
#endif

#ifdef A_GPU

//=================================
// borrowed noise from:
//  <https://www.shadertoy.com/view/4dS3Wd>
//  By Morgan McGuire @morgan3d, http://graphicscodex.com
//
float hash(float n) { return fract(sin(n) * 1e4); }
float hash(vec2 p) { return fract(1e4 * sin(17.0 * p.x + p.y * 0.1) * (0.1 + abs(sin(p.y * 13.0 + p.x)))); }

float noise(float x) {
    float i = floor(x);
    float f = fract(x);
    float u = f * f * (3.0 - 2.0 * f);
    return mix(hash(i), hash(i + 1.0), u);
}

float noise(vec2 x) {
    vec2 i = floor(x);
    vec2 f = fract(x);

    // Four corners in 2D of a tile
    float a = hash(i);
    float b = hash(i + vec2(1.0, 0.0));
    float c = hash(i + vec2(0.0, 1.0));
    float d = hash(i + vec2(1.0, 1.0));

    // Simple 2D lerp using smoothstep envelope between the values.
    // return vec3(mix(mix(a, b, smoothstep(0.0, 1.0, f.x)),
    //          mix(c, d, smoothstep(0.0, 1.0, f.x)),
    //          smoothstep(0.0, 1.0, f.y)));

    // Same code, with the clamps in smoothstep and common subexpressions
    // optimized away.
    vec2 u = f * f * (3.0 - 2.0 * f);
    return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y;
}

//===============================================================

vec3 legacyGamma(vec3 color)
{
    vec3 c = 1. - clamp(color, vec3(0.), vec3(1.));
    c = 1. - pow(c, vec3(gamma)); // s/b inverted already CPU-side

    return c;
}

void main()
{
    vec4 diff = vec4(0.f);
    uvec2 point = uvec2(vary_fragcoord * out_screen_res.xy);
    CasFilter(diff.r, diff.g, diff.b, point, cas_param_0, cas_param_1, true);
    diff.rgb = linear_to_srgb(diff.rgb);

#ifdef LEGACY_GAMMA
    diff.rgb = legacyGamma(diff.rgb);
#endif

    vec2 tc = vary_fragcoord.xy*out_screen_res.xy*4.0;
    vec3 seed = (diff.rgb+vec3(1.0))*vec3(tc.xy, tc.x+tc.y);
    vec3 nz = vec3(noise(seed.rg), noise(seed.gb), noise(seed.rb));
    diff.rgb += nz*0.003;

    diff.a = texture(diffuseRect, vary_fragcoord).a;
    frag_color = diff;
}
#endif