1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/**
* @file llatmosphere.cpp
* @brief LLAtmosphere integration impl
*
* $LicenseInfo:firstyear=2018&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2018, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llatmosphere.h"
#include "llfasttimer.h"
#include "llsys.h"
#include "llglheaders.h"
#include "llrender.h"
#include "llshadermgr.h"
#include "llglslshader.h"
LLAtmosphere* gAtmosphere = nullptr;
// Values from "Reference Solar Spectral Irradiance: ASTM G-173", ETR column
// (see http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html),
// summed and averaged in each bin (e.g. the value for 360nm is the average
// of the ASTM G-173 values for all wavelengths between 360 and 370nm).
// Values in W.m^-2.
const int kLambdaMin = 360;
const int kLambdaMax = 830;
const double kSolarIrradiance[48] = {
1.11776, 1.14259, 1.01249, 1.14716, 1.72765, 1.73054, 1.6887, 1.61253,
1.91198, 2.03474, 2.02042, 2.02212, 1.93377, 1.95809, 1.91686, 1.8298,
1.8685, 1.8931, 1.85149, 1.8504, 1.8341, 1.8345, 1.8147, 1.78158, 1.7533,
1.6965, 1.68194, 1.64654, 1.6048, 1.52143, 1.55622, 1.5113, 1.474, 1.4482,
1.41018, 1.36775, 1.34188, 1.31429, 1.28303, 1.26758, 1.2367, 1.2082,
1.18737, 1.14683, 1.12362, 1.1058, 1.07124, 1.04992
};
// Values from http://www.iup.uni-bremen.de/gruppen/molspec/databases/
// referencespectra/o3spectra2011/index.html for 233K, summed and averaged in
// each bin (e.g. the value for 360nm is the average of the original values
// for all wavelengths between 360 and 370nm). Values in m^2.
const double kOzoneCrossSection[48] = {
1.18e-27, 2.182e-28, 2.818e-28, 6.636e-28, 1.527e-27, 2.763e-27, 5.52e-27,
8.451e-27, 1.582e-26, 2.316e-26, 3.669e-26, 4.924e-26, 7.752e-26, 9.016e-26,
1.48e-25, 1.602e-25, 2.139e-25, 2.755e-25, 3.091e-25, 3.5e-25, 4.266e-25,
4.672e-25, 4.398e-25, 4.701e-25, 5.019e-25, 4.305e-25, 3.74e-25, 3.215e-25,
2.662e-25, 2.238e-25, 1.852e-25, 1.473e-25, 1.209e-25, 9.423e-26, 7.455e-26,
6.566e-26, 5.105e-26, 4.15e-26, 4.228e-26, 3.237e-26, 2.451e-26, 2.801e-26,
2.534e-26, 1.624e-26, 1.465e-26, 2.078e-26, 1.383e-26, 7.105e-27
};
// From https://en.wikipedia.org/wiki/Dobson_unit, in molecules.m^-2.
const double kDobsonUnit = 2.687e20;
// Maximum number density of ozone molecules, in m^-3 (computed so at to get
// 300 Dobson units of ozone - for this we divide 300 DU by the integral of
// the ozone density profile defined below, which is equal to 15km).
const double kMaxOzoneNumberDensity = 300.0 * kDobsonUnit / 15000.0;
const double kRayleigh = 1.24062e-6;
const double kRayleighScaleHeight = 8000.0;
const double kMieScaleHeight = 1200.0;
const double kMieAngstromAlpha = 0.0;
const double kMieAngstromBeta = 5.328e-3;
const double kMieSingleScatteringAlbedo = 0.9;
const double kGroundAlbedo = 0.1;
AtmosphericModelSettings::AtmosphericModelSettings()
: m_skyBottomRadius(6360.0f)
, m_skyTopRadius(6420.0f)
, m_sunArcRadians(0.00045f)
, m_mieAnisotropy(0.8f)
{
DensityLayer rayleigh_density(0.0, 1.0, -1.0 / kRayleighScaleHeight, 0.0, 0.0);
DensityLayer mie_density(0.0, 1.0, -1.0 / kMieScaleHeight, 0.0, 0.0);
m_rayleighProfile.push_back(rayleigh_density);
m_mieProfile.push_back(mie_density);
// Density profile increasing linearly from 0 to 1 between 10 and 25km, and
// decreasing linearly from 1 to 0 between 25 and 40km. This is an approximate
// profile from http://www.kln.ac.lk/science/Chemistry/Teaching_Resources/
// Documents/Introduction%20to%20atmospheric%20chemistry.pdf (page 10).
m_absorptionProfile.push_back(DensityLayer(25000.0, 0.0, 0.0, 1.0 / 15000.0, -2.0 / 3.0));
m_absorptionProfile.push_back(DensityLayer(0.0, 0.0, 0.0, -1.0 / 15000.0, 8.0 / 3.0));
}
AtmosphericModelSettings::AtmosphericModelSettings(
DensityProfile& rayleighProfile,
DensityProfile& mieProfile,
DensityProfile& absorptionProfile)
: m_skyBottomRadius(6360.0f)
, m_skyTopRadius(6420.0f)
, m_rayleighProfile(rayleighProfile)
, m_mieProfile(mieProfile)
, m_absorptionProfile(absorptionProfile)
, m_sunArcRadians(0.00045f)
, m_mieAnisotropy(0.8f)
{
}
AtmosphericModelSettings::AtmosphericModelSettings(
F32 skyBottomRadius,
F32 skyTopRadius,
DensityProfile& rayleighProfile,
DensityProfile& mieProfile,
DensityProfile& absorptionProfile,
F32 sunArcRadians,
F32 mieAniso)
: m_skyBottomRadius(skyBottomRadius)
, m_skyTopRadius(skyTopRadius)
, m_rayleighProfile(rayleighProfile)
, m_mieProfile(mieProfile)
, m_absorptionProfile(absorptionProfile)
, m_sunArcRadians(sunArcRadians)
, m_mieAnisotropy(mieAniso)
{
}
bool AtmosphericModelSettings::operator==(const AtmosphericModelSettings& rhs) const
{
if (m_skyBottomRadius != rhs.m_skyBottomRadius)
{
return false;
}
if (m_skyTopRadius != rhs.m_skyTopRadius)
{
return false;
}
if (m_sunArcRadians != rhs.m_sunArcRadians)
{
return false;
}
if (m_mieAnisotropy != rhs.m_mieAnisotropy)
{
return false;
}
if (m_rayleighProfile != rhs.m_rayleighProfile)
{
return false;
}
if (m_mieProfile != rhs.m_mieProfile)
{
return false;
}
if (m_absorptionProfile != rhs.m_absorptionProfile)
{
return false;
}
return true;
}
void LLAtmosphere::initClass()
{
if (!gAtmosphere)
{
gAtmosphere = new LLAtmosphere;
}
}
void LLAtmosphere::cleanupClass()
{
if(gAtmosphere)
{
delete gAtmosphere;
}
gAtmosphere = NULL;
}
LLAtmosphere::LLAtmosphere()
{
for (int l = kLambdaMin; l <= kLambdaMax; l += 10)
{
double lambda = static_cast<double>(l) * 1e-3; // micro-meters
double mie = kMieAngstromBeta / kMieScaleHeight * pow(lambda, -kMieAngstromAlpha);
m_wavelengths.push_back(l);
m_solar_irradiance.push_back(kSolarIrradiance[(l - kLambdaMin) / 10]);
m_rayleigh_scattering.push_back(kRayleigh * pow(lambda, -4));
m_mie_scattering.push_back(mie * kMieSingleScatteringAlbedo);
m_mie_extinction.push_back(mie);
m_absorption_extinction.push_back(kMaxOzoneNumberDensity * kOzoneCrossSection[(l - kLambdaMin) / 10]);
m_ground_albedo.push_back(kGroundAlbedo);
}
AtmosphericModelSettings defaults;
configureAtmosphericModel(defaults);
}
LLAtmosphere::~LLAtmosphere()
{
// Cease referencing textures from atmosphere::model from our LLGLTextures wrappers for same.
if (m_transmittance)
{
m_transmittance->setTexName(0);
}
if (m_scattering)
{
m_scattering->setTexName(0);
}
if (m_mie_scatter_texture)
{
m_mie_scatter_texture->setTexName(0);
}
}
bool LLAtmosphere::configureAtmosphericModel(AtmosphericModelSettings& settings)
{
// TBD
return true;
}
LLGLTexture* LLAtmosphere::getTransmittance()
{
if (!m_transmittance)
{
m_transmittance = new LLGLTexture;
m_transmittance->generateGLTexture();
m_transmittance->setAddressMode(LLTexUnit::eTextureAddressMode::TAM_CLAMP);
m_transmittance->setFilteringOption(LLTexUnit::eTextureFilterOptions::TFO_BILINEAR);
m_transmittance->setExplicitFormat(GL_RGB32F_ARB, GL_RGB, GL_FLOAT);
m_transmittance->setTarget(GL_TEXTURE_2D, LLTexUnit::TT_TEXTURE);
}
return m_transmittance;
}
LLGLTexture* LLAtmosphere::getScattering()
{
if (!m_scattering)
{
m_scattering = new LLGLTexture;
m_scattering->generateGLTexture();
m_scattering->setAddressMode(LLTexUnit::eTextureAddressMode::TAM_CLAMP);
m_scattering->setFilteringOption(LLTexUnit::eTextureFilterOptions::TFO_BILINEAR);
m_scattering->setExplicitFormat(GL_RGB16F_ARB, GL_RGB, GL_FLOAT);
m_scattering->setTarget(GL_TEXTURE_3D, LLTexUnit::TT_TEXTURE_3D);
}
return m_scattering;
}
LLGLTexture* LLAtmosphere::getMieScattering()
{
if (!m_mie_scatter_texture)
{
m_mie_scatter_texture = new LLGLTexture;
m_mie_scatter_texture->generateGLTexture();
m_mie_scatter_texture->setAddressMode(LLTexUnit::eTextureAddressMode::TAM_CLAMP);
m_mie_scatter_texture->setFilteringOption(LLTexUnit::eTextureFilterOptions::TFO_BILINEAR);
m_mie_scatter_texture->setExplicitFormat(GL_RGB16F_ARB, GL_RGB, GL_FLOAT);
m_mie_scatter_texture->setTarget(GL_TEXTURE_3D, LLTexUnit::TT_TEXTURE_3D);
}
return m_mie_scatter_texture;
}
LLGLTexture* LLAtmosphere::getIlluminance()
{
if (!m_illuminance)
{
m_illuminance = new LLGLTexture;
m_illuminance->generateGLTexture();
m_illuminance->setAddressMode(LLTexUnit::eTextureAddressMode::TAM_CLAMP);
m_illuminance->setFilteringOption(LLTexUnit::eTextureFilterOptions::TFO_BILINEAR);
m_illuminance->setExplicitFormat(GL_RGB32F_ARB, GL_RGB, GL_FLOAT);
m_illuminance->setTarget(GL_TEXTURE_2D, LLTexUnit::TT_TEXTURE);
}
return m_illuminance;
}
|