1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
/**
* @file v3math.h
* @brief LLVector3 class header file.
*
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_V3MATH_H
#define LL_V3MATH_H
#include "llerror.h"
#include "llmath.h"
#include "llsd.h"
class LLVector2;
class LLVector4;
class LLVector4a;
class LLMatrix3;
class LLMatrix4;
class LLVector3d;
class LLQuaternion;
// LLvector3 = |x y z w|
static const U32 LENGTHOFVECTOR3 = 3;
class LLVector3
{
public:
F32 mV[LENGTHOFVECTOR3];
static const LLVector3 zero;
static const LLVector3 x_axis;
static const LLVector3 y_axis;
static const LLVector3 z_axis;
static const LLVector3 x_axis_neg;
static const LLVector3 y_axis_neg;
static const LLVector3 z_axis_neg;
static const LLVector3 all_one;
inline LLVector3(); // Initializes LLVector3 to (0, 0, 0)
inline LLVector3(const F32 x, const F32 y, const F32 z); // Initializes LLVector3 to (x. y, z)
inline explicit LLVector3(const F32 *vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2])
explicit LLVector3(const LLVector2 &vec); // Initializes LLVector3 to (vec[0]. vec[1], 0)
explicit LLVector3(const LLVector3d &vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2])
explicit LLVector3(const LLVector4 &vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2])
explicit LLVector3(const LLVector4a& vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2])
explicit LLVector3(const LLSD& sd);
LLSD getValue() const;
void setValue(const LLSD& sd);
inline bool isFinite() const; // checks to see if all values of LLVector3 are finite
bool clamp(F32 min, F32 max); // Clamps all values to (min,max), returns true if data changed
bool clamp(const LLVector3 &min_vec, const LLVector3 &max_vec); // Scales vector by another vector
bool clampLength( F32 length_limit ); // Scales vector to limit length to a value
void quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization
void quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization
void snap(S32 sig_digits); // snaps x,y,z to sig_digits decimal places
bool abs(); // sets all values to absolute value of original value (first octant), returns true if changed
inline void clear(); // Clears LLVector3 to (0, 0, 0)
inline void setZero(); // Clears LLVector3 to (0, 0, 0)
inline void clearVec(); // deprecated
inline void zeroVec(); // deprecated
inline void set(F32 x, F32 y, F32 z); // Sets LLVector3 to (x, y, z, 1)
inline void set(const LLVector3 &vec); // Sets LLVector3 to vec
inline void set(const F32 *vec); // Sets LLVector3 to vec
const LLVector3& set(const LLVector4 &vec);
const LLVector3& set(const LLVector3d &vec);// Sets LLVector3 to vec
inline void setVec(F32 x, F32 y, F32 z); // deprecated
inline void setVec(const LLVector3 &vec); // deprecated
inline void setVec(const F32 *vec); // deprecated
const LLVector3& setVec(const LLVector4 &vec); // deprecated
const LLVector3& setVec(const LLVector3d &vec); // deprecated
F32 length() const; // Returns magnitude of LLVector3
F32 lengthSquared() const; // Returns magnitude squared of LLVector3
F32 magVec() const; // deprecated
F32 magVecSquared() const; // deprecated
inline F32 normalize(); // Normalizes and returns the magnitude of LLVector3
inline F32 normVec(); // deprecated
inline bool inRange( F32 min, F32 max ) const; // Returns true if all values of the vector are between min and max
const LLVector3& rotVec(F32 angle, const LLVector3 &vec); // Rotates about vec by angle radians
const LLVector3& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians
const LLVector3& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat
const LLVector3& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q
const LLVector3& transVec(const LLMatrix4& mat); // Transforms by LLMatrix4 mat (mat * v)
const LLVector3& scaleVec(const LLVector3& vec); // scales per component by vec
LLVector3 scaledVec(const LLVector3& vec) const; // get a copy of this vector scaled by vec
bool isNull() const; // Returns true if vector has a _very_small_ length
bool isExactlyZero() const { return !mV[VX] && !mV[VY] && !mV[VZ]; }
F32 operator[](int idx) const { return mV[idx]; }
F32 &operator[](int idx) { return mV[idx]; }
friend LLVector3 operator+(const LLVector3 &a, const LLVector3 &b); // Return vector a + b
friend LLVector3 operator-(const LLVector3 &a, const LLVector3 &b); // Return vector a minus b
friend F32 operator*(const LLVector3 &a, const LLVector3 &b); // Return a dot b
friend LLVector3 operator%(const LLVector3 &a, const LLVector3 &b); // Return a cross b
friend LLVector3 operator*(const LLVector3 &a, F32 k); // Return a times scaler k
friend LLVector3 operator/(const LLVector3 &a, F32 k); // Return a divided by scaler k
friend LLVector3 operator*(F32 k, const LLVector3 &a); // Return a times scaler k
friend bool operator==(const LLVector3 &a, const LLVector3 &b); // Return a == b
friend bool operator!=(const LLVector3 &a, const LLVector3 &b); // Return a != b
// less than operator useful for using vectors as std::map keys
friend bool operator<(const LLVector3 &a, const LLVector3 &b); // Return a < b
friend const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b); // Return vector a + b
friend const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b); // Return vector a minus b
friend const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b); // Return a cross b
friend const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b); // Returns a * b;
friend const LLVector3& operator*=(LLVector3 &a, F32 k); // Return a times scaler k
friend const LLVector3& operator/=(LLVector3 &a, F32 k); // Return a divided by scaler k
friend const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &b); // Returns a * b;
friend LLVector3 operator-(const LLVector3 &a); // Return vector -a
friend std::ostream& operator<<(std::ostream& s, const LLVector3 &a); // Stream a
static bool parseVector3(const std::string& buf, LLVector3* value);
};
typedef LLVector3 LLSimLocalVec;
// Non-member functions
F32 angle_between(const LLVector3 &a, const LLVector3 &b); // Returns angle (radians) between a and b
bool are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns true if a and b are very close to parallel
F32 dist_vec(const LLVector3 &a, const LLVector3 &b); // Returns distance between a and b
F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b);// Returns distance squared between a and b
F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b);// Returns distance squared between a and b ignoring Z component
LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b
LLVector3 inverse_projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a scaled such that projected_vec(inverse_projected_vec(a, b), b) == b;
LLVector3 parallel_component(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b (same as projected_vec)
LLVector3 orthogonal_component(const LLVector3 &a, const LLVector3 &b); // Returns component of vector a not parallel to vector b (same as projected_vec)
LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u); // Returns a vector that is a linear interpolation between a and b
LLVector3 point_to_box_offset(LLVector3& pos, const LLVector3* box); // Displacement from query point to nearest point on bounding box.
bool box_valid_and_non_zero(const LLVector3* box);
inline LLVector3::LLVector3(void)
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
}
inline LLVector3::LLVector3(const F32 x, const F32 y, const F32 z)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
}
inline LLVector3::LLVector3(const F32 *vec)
{
mV[VX] = vec[VX];
mV[VY] = vec[VY];
mV[VZ] = vec[VZ];
}
/*
inline LLVector3::LLVector3(const LLVector3 ©)
{
mV[VX] = copy.mV[VX];
mV[VY] = copy.mV[VY];
mV[VZ] = copy.mV[VZ];
}
*/
// Destructors
// checker
inline bool LLVector3::isFinite() const
{
return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]));
}
// Clear and Assignment Functions
inline void LLVector3::clear(void)
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
}
inline void LLVector3::setZero(void)
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
}
inline void LLVector3::clearVec(void)
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
}
inline void LLVector3::zeroVec(void)
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
}
inline void LLVector3::set(F32 x, F32 y, F32 z)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
}
inline void LLVector3::set(const LLVector3 &vec)
{
mV[0] = vec.mV[0];
mV[1] = vec.mV[1];
mV[2] = vec.mV[2];
}
inline void LLVector3::set(const F32 *vec)
{
mV[0] = vec[0];
mV[1] = vec[1];
mV[2] = vec[2];
}
// deprecated
inline void LLVector3::setVec(F32 x, F32 y, F32 z)
{
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
}
// deprecated
inline void LLVector3::setVec(const LLVector3 &vec)
{
mV[0] = vec.mV[0];
mV[1] = vec.mV[1];
mV[2] = vec.mV[2];
}
// deprecated
inline void LLVector3::setVec(const F32 *vec)
{
mV[0] = vec[0];
mV[1] = vec[1];
mV[2] = vec[2];
}
inline F32 LLVector3::normalize(void)
{
F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
F32 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
mV[0] *= oomag;
mV[1] *= oomag;
mV[2] *= oomag;
}
else
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
mag = 0;
}
return (mag);
}
// deprecated
inline F32 LLVector3::normVec(void)
{
F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
F32 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
mV[0] *= oomag;
mV[1] *= oomag;
mV[2] *= oomag;
}
else
{
mV[0] = 0.f;
mV[1] = 0.f;
mV[2] = 0.f;
mag = 0;
}
return (mag);
}
// LLVector3 Magnitude and Normalization Functions
inline F32 LLVector3::length(void) const
{
return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
}
inline F32 LLVector3::lengthSquared(void) const
{
return mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2];
}
inline F32 LLVector3::magVec(void) const
{
return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
}
inline F32 LLVector3::magVecSquared(void) const
{
return mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2];
}
inline bool LLVector3::inRange( F32 min, F32 max ) const
{
return mV[0] >= min && mV[0] <= max &&
mV[1] >= min && mV[1] <= max &&
mV[2] >= min && mV[2] <= max;
}
inline LLVector3 operator+(const LLVector3 &a, const LLVector3 &b)
{
LLVector3 c(a);
return c += b;
}
inline LLVector3 operator-(const LLVector3 &a, const LLVector3 &b)
{
LLVector3 c(a);
return c -= b;
}
inline F32 operator*(const LLVector3 &a, const LLVector3 &b)
{
return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]);
}
inline LLVector3 operator%(const LLVector3 &a, const LLVector3 &b)
{
return LLVector3( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1] );
}
inline LLVector3 operator/(const LLVector3 &a, F32 k)
{
F32 t = 1.f / k;
return LLVector3( a.mV[0] * t, a.mV[1] * t, a.mV[2] * t );
}
inline LLVector3 operator*(const LLVector3 &a, F32 k)
{
return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
}
inline LLVector3 operator*(F32 k, const LLVector3 &a)
{
return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
}
inline bool operator==(const LLVector3 &a, const LLVector3 &b)
{
return ( (a.mV[0] == b.mV[0])
&&(a.mV[1] == b.mV[1])
&&(a.mV[2] == b.mV[2]));
}
inline bool operator!=(const LLVector3 &a, const LLVector3 &b)
{
return ( (a.mV[0] != b.mV[0])
||(a.mV[1] != b.mV[1])
||(a.mV[2] != b.mV[2]));
}
inline bool operator<(const LLVector3 &a, const LLVector3 &b)
{
return (a.mV[0] < b.mV[0]
|| (a.mV[0] == b.mV[0]
&& (a.mV[1] < b.mV[1]
|| ((a.mV[1] == b.mV[1])
&& a.mV[2] < b.mV[2]))));
}
inline const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b)
{
a.mV[0] += b.mV[0];
a.mV[1] += b.mV[1];
a.mV[2] += b.mV[2];
return a;
}
inline const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b)
{
a.mV[0] -= b.mV[0];
a.mV[1] -= b.mV[1];
a.mV[2] -= b.mV[2];
return a;
}
inline const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b)
{
LLVector3 ret( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1]);
a = ret;
return a;
}
inline const LLVector3& operator*=(LLVector3 &a, F32 k)
{
a.mV[0] *= k;
a.mV[1] *= k;
a.mV[2] *= k;
return a;
}
inline const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b)
{
a.mV[0] *= b.mV[0];
a.mV[1] *= b.mV[1];
a.mV[2] *= b.mV[2];
return a;
}
inline const LLVector3& operator/=(LLVector3 &a, F32 k)
{
a.mV[0] /= k;
a.mV[1] /= k;
a.mV[2] /= k;
return a;
}
inline const LLVector3& operator/=(LLVector3& a, const LLVector3& b)
{
a.mV[0] /= b.mV[0];
a.mV[1] /= b.mV[1];
a.mV[2] /= b.mV[2];
return a;
}
inline LLVector3 operator-(const LLVector3 &a)
{
return LLVector3( -a.mV[0], -a.mV[1], -a.mV[2] );
}
inline F32 dist_vec(const LLVector3 &a, const LLVector3 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
F32 z = a.mV[2] - b.mV[2];
return (F32) sqrt( x*x + y*y + z*z );
}
inline F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
F32 z = a.mV[2] - b.mV[2];
return x*x + y*y + z*z;
}
inline F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return x*x + y*y;
}
inline LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b)
{
F32 bb = b * b;
if (bb > FP_MAG_THRESHOLD * FP_MAG_THRESHOLD)
{
return ((a * b) / bb) * b;
}
else
{
return b.zero;
}
}
inline LLVector3 inverse_projected_vec(const LLVector3& a, const LLVector3& b)
{
LLVector3 normalized_a = a;
normalized_a.normalize();
LLVector3 normalized_b = b;
F32 b_length = normalized_b.normalize();
F32 dot_product = normalized_a * normalized_b;
//NB: if a _|_ b, then returns an infinite vector
return normalized_a * (b_length / dot_product);
}
inline LLVector3 parallel_component(const LLVector3 &a, const LLVector3 &b)
{
return projected_vec(a, b);
}
inline LLVector3 orthogonal_component(const LLVector3 &a, const LLVector3 &b)
{
return a - projected_vec(a, b);
}
inline LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u)
{
return LLVector3(
a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u,
a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u);
}
inline bool LLVector3::isNull() const
{
if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ] )
{
return true;
}
return false;
}
inline void update_min_max(LLVector3& min, LLVector3& max, const LLVector3& pos)
{
for (U32 i = 0; i < 3; i++)
{
if (min.mV[i] > pos.mV[i])
{
min.mV[i] = pos.mV[i];
}
if (max.mV[i] < pos.mV[i])
{
max.mV[i] = pos.mV[i];
}
}
}
inline void update_min_max(LLVector3& min, LLVector3& max, const F32* pos)
{
for (U32 i = 0; i < 3; i++)
{
if (min.mV[i] > pos[i])
{
min.mV[i] = pos[i];
}
if (max.mV[i] < pos[i])
{
max.mV[i] = pos[i];
}
}
}
inline F32 angle_between(const LLVector3& a, const LLVector3& b)
{
F32 ab = a * b; // dotproduct
if (ab == -0.0f)
{
ab = 0.0f; // get rid of negative zero
}
LLVector3 c = a % b; // crossproduct
return atan2f(sqrtf(c * c), ab); // return the angle
}
inline bool are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon)
{
LLVector3 an = a;
LLVector3 bn = b;
an.normalize();
bn.normalize();
F32 dot = an * bn;
if ( (1.0f - fabs(dot)) < epsilon)
{
return true;
}
return false;
}
inline std::ostream& operator<<(std::ostream& s, const LLVector3 &a)
{
s << "{ " << a.mV[VX] << ", " << a.mV[VY] << ", " << a.mV[VZ] << " }";
return s;
}
#endif
|