summaryrefslogtreecommitdiff
path: root/indra/llmath/m4math.h
blob: de981b764668d638daf64a7720b73f091c538eb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/** 
 * @file m4math.h
 * @brief LLMatrix4 class header file.
 *
 * $LicenseInfo:firstyear=2000&license=viewergpl$
 * 
 * Copyright (c) 2000-2009, Linden Research, Inc.
 * 
 * Second Life Viewer Source Code
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at
 * http://secondlifegrid.net/programs/open_source/licensing/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 * $/LicenseInfo$
 */

#ifndef LL_M4MATH_H
#define LL_M4MATH_H

#include "v3math.h"

class LLVector4;
class LLMatrix3;
class LLQuaternion;

// NOTA BENE: Currently assuming a right-handed, x-forward, y-left, z-up universe

// Us versus OpenGL:

// Even though OpenGL uses column vectors and we use row vectors, we can plug our matrices
// directly into OpenGL.  This is because OpenGL numbers its matrices going columnwise:
//
// OpenGL indexing:          Our indexing:
// 0  4  8 12                [0][0] [0][1] [0][2] [0][3]
// 1  5  9 13                [1][0] [1][1] [1][2] [1][3]
// 2  6 10 14                [2][0] [2][1] [2][2] [2][3]
// 3  7 11 15                [3][0] [3][1] [3][2] [3][3]
//
// So when you're looking at OpenGL related matrices online, our matrices will be
// "transposed".  But our matrices can be plugged directly into OpenGL and work fine!
//

// We're using row vectors - [vx, vy, vz, vw]
//
// There are several different ways of thinking of matrices, if you mix them up, you'll get very confused.
//
// One way to think about it is a matrix that takes the origin frame A
// and rotates it into B': i.e. A*M = B
//
//		Vectors:
//		f - forward axis of B expressed in A
//		l - left axis of B expressed in A
//		u - up axis of B expressed in A
//
//		|  0: fx  1: fy  2: fz  3:0 |
//  M = |  4: lx  5: ly  6: lz  7:0 |
//      |  8: ux  9: uy 10: uz 11:0 |
//      | 12: 0  13: 0  14:  0 15:1 |
//		
//
//
//
// Another way to think of matrices is matrix that takes a point p in frame A, and puts it into frame B:
// This is used most commonly for the modelview matrix.
//
// so p*M = p'
//
//		Vectors:
//      f - forward of frame B in frame A
//      l - left of frame B in frame A
//      u - up of frame B in frame A
//      o - origin of frame frame B in frame A
//
//		|  0: fx  1: lx  2: ux  3:0 |
//  M = |  4: fy  5: ly  6: uy  7:0 |
//      |  8: fz  9: lz 10: uz 11:0 |
//      | 12:-of 13:-ol 14:-ou 15:1 |
//
//		of, ol, and ou mean the component of the "global" origin o in the f axis, l axis, and u axis.
//

static const U32 NUM_VALUES_IN_MAT4 = 4;

class LLMatrix4
{
public:
	F32	mMatrix[NUM_VALUES_IN_MAT4][NUM_VALUES_IN_MAT4];

	// Initializes Matrix to identity matrix
	LLMatrix4()
	{
		setIdentity();
	}
	explicit LLMatrix4(const F32 *mat);								// Initializes Matrix to values in mat
	explicit LLMatrix4(const LLMatrix3 &mat);						// Initializes Matrix to values in mat and sets position to (0,0,0)
	explicit LLMatrix4(const LLQuaternion &q);						// Initializes Matrix with rotation q and sets position to (0,0,0)

	LLMatrix4(const LLMatrix3 &mat, const LLVector4 &pos);	// Initializes Matrix to values in mat and pos

	// These are really, really, inefficient as implemented! - djs
	LLMatrix4(const LLQuaternion &q, const LLVector4 &pos);	// Initializes Matrix with rotation q and position pos
	LLMatrix4(F32 angle,
			  const LLVector4 &vec, 
			  const LLVector4 &pos);						// Initializes Matrix with axis-angle and position
	LLMatrix4(F32 angle, const LLVector4 &vec);				// Initializes Matrix with axis-angle and sets position to (0,0,0)
	LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw, 
			  const LLVector4 &pos);						// Initializes Matrix with Euler angles
	LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw);				// Initializes Matrix with Euler angles

	~LLMatrix4(void);										// Destructor


	//////////////////////////////
	//
	// Matrix initializers - these replace any existing values in the matrix
	//

	void initRows(const LLVector4 &row0,
				  const LLVector4 &row1,
				  const LLVector4 &row2,
				  const LLVector4 &row3);

	// various useful matrix functions
	const LLMatrix4& setIdentity();					// Load identity matrix
	const LLMatrix4& setZero();						// Clears matrix to all zeros.

	const LLMatrix4& initRotation(const F32 angle, const F32 x, const F32 y, const F32 z);	// Calculate rotation matrix by rotating angle radians about (x, y, z)
	const LLMatrix4& initRotation(const F32 angle, const LLVector4 &axis);	// Calculate rotation matrix for rotating angle radians about vec
	const LLMatrix4& initRotation(const F32 roll, const F32 pitch, const F32 yaw);		// Calculate rotation matrix from Euler angles
	const LLMatrix4& initRotation(const LLQuaternion &q);			// Set with Quaternion and position
	
	// Position Only
	const LLMatrix4& initMatrix(const LLMatrix3 &mat); //
	const LLMatrix4& initMatrix(const LLMatrix3 &mat, const LLVector4 &translation);

	// These operation create a matrix that will rotate and translate by the
	// specified amounts.
	const LLMatrix4& initRotTrans(const F32 angle,
								  const F32 rx, const F32 ry, const F32 rz,
								  const F32 px, const F32 py, const F32 pz);

	const LLMatrix4& initRotTrans(const F32 angle, const LLVector3 &axis, const LLVector3 &translation);	 // Rotation from axis angle + translation
	const LLMatrix4& initRotTrans(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos); // Rotation from Euler + translation
	const LLMatrix4& initRotTrans(const LLQuaternion &q, const LLVector4 &pos);	// Set with Quaternion and position

	const LLMatrix4& initScale(const LLVector3 &scale);

	// Set all
	const LLMatrix4& initAll(const LLVector3 &scale, const LLQuaternion &q, const LLVector3 &pos);	


	///////////////////////////
	//
	// Matrix setters - set some properties without modifying others
	//

	const LLMatrix4& setTranslation(const F32 x, const F32 y, const F32 z);	// Sets matrix to translate by (x,y,z)

	void setFwdRow(const LLVector3 &row);
	void setLeftRow(const LLVector3 &row);
	void setUpRow(const LLVector3 &row);

	void setFwdCol(const LLVector3 &col);
	void setLeftCol(const LLVector3 &col);
	void setUpCol(const LLVector3 &col);

	const LLMatrix4& setTranslation(const LLVector4 &translation);
	const LLMatrix4& setTranslation(const LLVector3 &translation);

	///////////////////////////
	//
	// Get properties of a matrix
	//

	F32			 determinant(void) const;						// Return determinant
	LLQuaternion quaternion(void) const;			// Returns quaternion

	LLVector4 getFwdRow4() const;
	LLVector4 getLeftRow4() const;
	LLVector4 getUpRow4() const;

	LLMatrix3 getMat3() const;

	const LLVector3& getTranslation() const { return *(LLVector3*)&mMatrix[3][0]; }

	///////////////////////////
	//
	// Operations on an existing matrix
	//

	const LLMatrix4& transpose();						// Transpose LLMatrix4
	const LLMatrix4& invert();						// Invert LLMatrix4

	// Rotate existing matrix
	// These are really, really, inefficient as implemented! - djs
	const LLMatrix4& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); 		// Rotate matrix by rotating angle radians about (x, y, z)
	const LLMatrix4& rotate(const F32 angle, const LLVector4 &vec);		// Rotate matrix by rotating angle radians about vec
	const LLMatrix4& rotate(const F32 roll, const F32 pitch, const F32 yaw);		// Rotate matrix by Euler angles
	const LLMatrix4& rotate(const LLQuaternion &q);				// Rotate matrix by Quaternion

	
	// Translate existing matrix
	const LLMatrix4& translate(const LLVector3 &vec);				// Translate matrix by (vec[VX], vec[VY], vec[VZ])
	



	///////////////////////
	//
	// Operators
	//

// Not implemented to enforce code that agrees with symbolic syntax
//		friend LLVector4 operator*(const LLMatrix4 &a, const LLVector4 &b);		// Apply rotation a to vector b

//	friend inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b);		// Return a * b
	friend LLVector4 operator*(const LLVector4 &a, const LLMatrix4 &b);		// Return transform of vector a by matrix b
	friend const LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b);		// Return full transform of a by matrix b
	friend LLVector4 rotate_vector(const LLVector4 &a, const LLMatrix4 &b);	// Rotates a but does not translate
	friend LLVector3 rotate_vector(const LLVector3 &a, const LLMatrix4 &b);	// Rotates a but does not translate

	friend bool operator==(const LLMatrix4 &a, const LLMatrix4 &b);			// Return a == b
	friend bool operator!=(const LLMatrix4 &a, const LLMatrix4 &b);			// Return a != b

	friend const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a + b
	friend const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a - b
	friend const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a * b
	friend const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b);			// Return a * b

	friend std::ostream&	 operator<<(std::ostream& s, const LLMatrix4 &a);	// Stream a
};

inline const LLMatrix4&	LLMatrix4::setIdentity()
{
	mMatrix[0][0] = 1.f;
	mMatrix[0][1] = 0.f;
	mMatrix[0][2] = 0.f;
	mMatrix[0][3] = 0.f;

	mMatrix[1][0] = 0.f;
	mMatrix[1][1] = 1.f;
	mMatrix[1][2] = 0.f;
	mMatrix[1][3] = 0.f;

	mMatrix[2][0] = 0.f;
	mMatrix[2][1] = 0.f;
	mMatrix[2][2] = 1.f;
	mMatrix[2][3] = 0.f;

	mMatrix[3][0] = 0.f;
	mMatrix[3][1] = 0.f;
	mMatrix[3][2] = 0.f;
	mMatrix[3][3] = 1.f;
	return (*this);
}


/*
inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b)
{
	U32		i, j;
	LLMatrix4	mat;
	for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
	{
		for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
		{
			mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + 
							    a.mMatrix[j][1] * b.mMatrix[1][i] + 
							    a.mMatrix[j][2] * b.mMatrix[2][i] +
								a.mMatrix[j][3] * b.mMatrix[3][i];
		}
	}
	return mat;
}
*/


inline const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b)
{
	U32		i, j;
	LLMatrix4	mat;
	for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
	{
		for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
		{
			mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + 
							    a.mMatrix[j][1] * b.mMatrix[1][i] + 
							    a.mMatrix[j][2] * b.mMatrix[2][i] +
								a.mMatrix[j][3] * b.mMatrix[3][i];
		}
	}
	a = mat;
	return a;
}

inline const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b)
{
	U32		i, j;
	LLMatrix4	mat;
	for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
	{
		for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
		{
			mat.mMatrix[j][i] = a.mMatrix[j][i] * b;
		}
	}
	a = mat;
	return a;
}

inline const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b)
{
	LLMatrix4 mat;
	U32		i, j;
	for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
	{
		for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
		{
			mat.mMatrix[j][i] = a.mMatrix[j][i] + b.mMatrix[j][i];
		}
	}
	a = mat;
	return a;
}

inline const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b)
{
	LLMatrix4 mat;
	U32		i, j;
	for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
	{
		for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
		{
			mat.mMatrix[j][i] = a.mMatrix[j][i] - b.mMatrix[j][i];
		}
	}
	a = mat;
	return a;
}

// Operates "to the left" on row-vector a
//
// When avatar vertex programs are off, this function is a hot spot in profiles
// due to software skinning in LLViewerJointMesh::updateGeometry().  JC
inline const LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b)
{
	// This is better than making a temporary LLVector3.  This eliminates an
	// unnecessary LLVector3() constructor and also helps the compiler to
	// realize that the output floats do not alias the input floats, hence
	// eliminating redundant loads of a.mV[0], etc.  JC
	return LLVector3(a.mV[VX] * b.mMatrix[VX][VX] + 
					 a.mV[VY] * b.mMatrix[VY][VX] + 
					 a.mV[VZ] * b.mMatrix[VZ][VX] +
					 b.mMatrix[VW][VX],
					 
					 a.mV[VX] * b.mMatrix[VX][VY] + 
					 a.mV[VY] * b.mMatrix[VY][VY] + 
					 a.mV[VZ] * b.mMatrix[VZ][VY] +
					 b.mMatrix[VW][VY],
					 
					 a.mV[VX] * b.mMatrix[VX][VZ] + 
					 a.mV[VY] * b.mMatrix[VY][VZ] + 
					 a.mV[VZ] * b.mMatrix[VZ][VZ] +
					 b.mMatrix[VW][VZ]);
}

#endif