1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
/**
* @file m3math.h
* @brief LLMatrix3 class header file.
*
* Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
* $License$
*/
#ifndef LL_M3MATH_H
#define LL_M3MATH_H
#include "llerror.h"
class LLVector4;
class LLVector3;
class LLVector3d;
class LLQuaternion;
// NOTA BENE: Currently assuming a right-handed, z-up universe
// ji
// LLMatrix3 = | 00 01 02 |
// | 10 11 12 |
// | 20 21 22 |
// LLMatrix3 = | fx fy fz | forward-axis
// | lx ly lz | left-axis
// | ux uy uz | up-axis
// NOTE: The world of computer graphics uses column-vectors and matricies that
// "operate to the left".
static const U32 NUM_VALUES_IN_MAT3 = 3;
class LLMatrix3
{
public:
F32 mMatrix[NUM_VALUES_IN_MAT3][NUM_VALUES_IN_MAT3];
LLMatrix3(void); // Initializes Matrix to identity matrix
explicit LLMatrix3(const F32 *mat); // Initializes Matrix to values in mat
explicit LLMatrix3(const LLQuaternion &q); // Initializes Matrix with rotation q
LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z); // Initializes Matrix with axis angle
LLMatrix3(const F32 angle, const LLVector3 &vec); // Initializes Matrix with axis angle
LLMatrix3(const F32 angle, const LLVector3d &vec); // Initializes Matrix with axis angle
LLMatrix3(const F32 angle, const LLVector4 &vec); // Initializes Matrix with axis angle
LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw); // Initializes Matrix with Euler angles
//////////////////////////////
//
// Matrix initializers - these replace any existing values in the matrix
//
// various useful matrix functions
const LLMatrix3& identity(); // Load identity matrix
const LLMatrix3& zero(); // Clears Matrix to zero
///////////////////////////
//
// Matrix setters - set some properties without modifying others
//
// These functions take Rotation arguments
const LLMatrix3& setRot(const F32 angle, const F32 x, const F32 y, const F32 z); // Calculate rotation matrix for rotating angle radians about (x, y, z)
const LLMatrix3& setRot(const F32 angle, const LLVector3 &vec); // Calculate rotation matrix for rotating angle radians about vec
const LLMatrix3& setRot(const F32 roll, const F32 pitch, const F32 yaw); // Calculate rotation matrix from Euler angles
const LLMatrix3& setRot(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos
const LLMatrix3& setRows(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis);
///////////////////////////
//
// Get properties of a matrix
//
LLQuaternion quaternion() const; // Returns quaternion from mat
void getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const; // Returns Euler angles, in radians
// Axis extraction routines
LLVector3 getFwdRow() const;
LLVector3 getLeftRow() const;
LLVector3 getUpRow() const;
F32 determinant() const; // Return determinant
///////////////////////////
//
// Operations on an existing matrix
//
const LLMatrix3& transpose(); // Transpose MAT4
const LLMatrix3& invert(); // Invert MAT4
const LLMatrix3& orthogonalize(); // Orthogonalizes X, then Y, then Z
const LLMatrix3& adjointTranspose(); // returns transpose of matrix adjoint, for multiplying normals
// Rotate existing matrix
// Note: the two lines below are equivalent:
// foo.rotate(bar)
// foo = foo * bar
// That is, foo.rotMat3(bar) multiplies foo by bar FROM THE RIGHT
const LLMatrix3& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); // Rotate matrix by rotating angle radians about (x, y, z)
const LLMatrix3& rotate(const F32 angle, const LLVector3 &vec); // Rotate matrix by rotating angle radians about vec
const LLMatrix3& rotate(const F32 roll, const F32 pitch, const F32 yaw); // Rotate matrix by roll (about x), pitch (about y), and yaw (about z)
const LLMatrix3& rotate(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos
// This operator is misleading as to operation direction
// friend LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b); // Apply rotation a to vector b
friend LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b); // Apply rotation b to vector a
friend LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b); // Apply rotation b to vector a
friend LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b); // Return a * b
friend bool operator==(const LLMatrix3 &a, const LLMatrix3 &b); // Return a == b
friend bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b); // Return a != b
friend const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b); // Return a * b
friend std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a); // Stream a
};
inline LLMatrix3::LLMatrix3(void)
{
mMatrix[0][0] = 1.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 1.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 1.f;
}
inline LLMatrix3::LLMatrix3(const F32 *mat)
{
mMatrix[0][0] = mat[0];
mMatrix[0][1] = mat[1];
mMatrix[0][2] = mat[2];
mMatrix[1][0] = mat[3];
mMatrix[1][1] = mat[4];
mMatrix[1][2] = mat[5];
mMatrix[2][0] = mat[6];
mMatrix[2][1] = mat[7];
mMatrix[2][2] = mat[8];
}
#endif
// Rotation matrix hints...
// Inverse of Rotation Matrices
// ----------------------------
// If R is a rotation matrix that rotate vectors from Frame-A to Frame-B,
// then the transpose of R will rotate vectors from Frame-B to Frame-A.
// Creating Rotation Matricies From Object Axes
// --------------------------------------------
// Suppose you know the three axes of some object in some "absolute-frame".
// If you take those three vectors and throw them into the rows of
// a rotation matrix what do you get?
//
// R = | X0 X1 X2 |
// | Y0 Y1 Y2 |
// | Z0 Z1 Z2 |
//
// Yeah, but what does it mean?
//
// Transpose the matrix and have it operate on a vector...
//
// V * R_transpose = [ V0 V1 V2 ] * | X0 Y0 Z0 |
// | X1 Y1 Z1 |
// | X2 Y2 Z2 |
//
// = [ V*X V*Y V*Z ]
//
// = components of V that are parallel to the three object axes
//
// = transformation of V into object frame
//
// Since the transformation of a rotation matrix is its inverse, then
// R must rotate vectors from the object-frame into the absolute-frame.
|