1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/**
* @file llvector4a.h
* @brief LLVector4a class header file - memory aligned and vectorized 4 component vector
*
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLVECTOR4A_H
#define LL_LLVECTOR4A_H
class LLRotation;
#include <assert.h>
#include "llpreprocessor.h"
#include "llmemory.h"
///////////////////////////////////
// FIRST TIME USERS PLEASE READ
//////////////////////////////////
// This is just the beginning of LLVector4a. There are many more useful functions
// yet to be implemented. For example, setNeg to negate a vector, rotate() to apply
// a matrix rotation, various functions to manipulate only the X, Y, and Z elements
// and many others (including a whole variety of accessors). So if you don't see a
// function here that you need, please contact Falcon or someone else with SSE
// experience (Richard, I think, has some and davep has a little as of the time
// of this writing, July 08, 2010) about getting it implemented before you resort to
// LLVector3/LLVector4.
/////////////////////////////////
class alignas(16) LLVector4a
{
LL_ALIGN_NEW
public:
///////////////////////////////////
// STATIC METHODS
///////////////////////////////////
// Call initClass() at startup to avoid 15,000+ cycle penalties from denormalized numbers
static void initClass()
{
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);
}
// Return a vector of all zeros
static inline const LLVector4a& getZero()
{
extern const LLVector4a LL_V4A_ZERO;
return LL_V4A_ZERO;
}
// Return a vector of all epsilon, where epsilon is a small float suitable for approximate equality checks
static inline const LLVector4a& getEpsilon()
{
extern const LLVector4a LL_V4A_EPSILON;
return LL_V4A_EPSILON;
}
// Copy 16 bytes from src to dst. Source and destination must be 16-byte aligned
static inline void copy4a(F32* dst, const F32* src)
{
_mm_store_ps(dst, _mm_load_ps(src));
}
// Copy words 16-byte blocks from src to dst. Source and destination must not overlap.
// Source and dest must be 16-byte aligned and size must be multiple of 16.
static void memcpyNonAliased16(F32* __restrict dst, const F32* __restrict src, size_t bytes);
////////////////////////////////////
// CONSTRUCTORS
////////////////////////////////////
//LLVector4a is plain data which should never have a default constructor or destructor(malloc&free won't trigger it)
LLVector4a()
{ //DO NOT INITIALIZE -- The overhead is completely unnecessary
ll_assert_aligned(this,16);
}
LLVector4a(F32 x, F32 y, F32 z, F32 w = 0.f)
{
set(x,y,z,w);
}
LLVector4a(F32 x)
{
splat(x);
}
LLVector4a(const LLSimdScalar& x)
{
splat(x);
}
LLVector4a(LLQuad q)
{
mQ = q;
}
bool operator==(const LLVector4a& rhs) const
{
return equals4(rhs);
}
bool operator!=(const LLVector4a& rhs) const
{
return !(*this == rhs);
}
const LLVector4a& operator+=(const LLVector4a& rhs)
{
add(rhs);
return *this;
}
const LLVector4a& operator-=(const LLVector4a& rhs)
{
sub(rhs);
return *this;
}
LLVector4a operator+(const LLVector4a& rhs) const
{
LLVector4a result = *this;
result.add(rhs);
return result;
}
LLVector4a operator-(const LLVector4a& rhs) const
{
LLVector4a result = *this;
result.sub(rhs);
return result;
}
LLVector4a cross3(const LLVector4a& b) const
{
LLVector4a result;
result.setCross3(*this, b);
return result;
}
////////////////////////////////////
// LOAD/STORE
////////////////////////////////////
// Load from 16-byte aligned src array (preferred method of loading)
inline void load4a(const F32* src);
// Load from unaligned src array (NB: Significantly slower than load4a)
inline void loadua(const F32* src);
// Load only three floats beginning at address 'src'. Slowest method.
inline void load3(const F32* src);
// Store to a 16-byte aligned memory address
inline void store4a(F32* dst) const;
////////////////////////////////////
// BASIC GET/SET
////////////////////////////////////
// Return a "this" as an F32 pointer.
inline F32* getF32ptr();
// Return a "this" as a const F32 pointer.
inline const F32* const getF32ptr() const;
// Read-only access a single float in this vector. Do not use in proximity to any function call that manipulates
// the data at the whole vector level or you will incur a substantial penalty. Consider using the splat functions instead
inline F32 operator[](const S32 idx) const;
// Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
inline LLSimdScalar getScalarAt(const S32 idx) const;
// Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
template <int N> LL_FORCE_INLINE LLSimdScalar getScalarAt() const;
// Set to an x, y, z and optional w provided
inline void set(F32 x, F32 y, F32 z, F32 w = 0.f);
// Set to all zeros. This is preferred to using ::getZero()
inline void clear();
// Set all elements to 'x'
inline void splat(const F32 x);
// Set all elements to 'x'
inline void splat(const LLSimdScalar& x);
// Set all 4 elements to element N of src, with N known at compile time
template <int N> void splat(const LLVector4a& src);
// Set all 4 elements to element i of v, with i NOT known at compile time
inline void splat(const LLVector4a& v, U32 i);
// Select bits from sourceIfTrue and sourceIfFalse according to bits in mask
inline void setSelectWithMask( const LLVector4Logical& mask, const LLVector4a& sourceIfTrue, const LLVector4a& sourceIfFalse );
////////////////////////////////////
// ALGEBRAIC
////////////////////////////////////
// Set this to the element-wise (a + b)
inline void setAdd(const LLVector4a& a, const LLVector4a& b);
// Set this to element-wise (a - b)
inline void setSub(const LLVector4a& a, const LLVector4a& b);
// Set this to element-wise multiply (a * b)
inline void setMul(const LLVector4a& a, const LLVector4a& b);
// Set this to element-wise quotient (a / b)
inline void setDiv(const LLVector4a& a, const LLVector4a& b);
// Set this to the element-wise absolute value of src
inline void setAbs(const LLVector4a& src);
// Add to each component in this vector the corresponding component in rhs
inline void add(const LLVector4a& rhs);
// Subtract from each component in this vector the corresponding component in rhs
inline void sub(const LLVector4a& rhs);
// Multiply each component in this vector by the corresponding component in rhs
inline void mul(const LLVector4a& rhs);
// Divide each component in this vector by the corresponding component in rhs
inline void div(const LLVector4a& rhs);
// Multiply this vector by x in a scalar fashion
inline void mul(const F32 x);
// Set this to (a x b) (geometric cross-product)
inline void setCross3(const LLVector4a& a, const LLVector4a& b);
// Set all elements to the dot product of the x, y, and z elements in a and b
inline void setAllDot3(const LLVector4a& a, const LLVector4a& b);
// Set all elements to the dot product of the x, y, z, and w elements in a and b
inline void setAllDot4(const LLVector4a& a, const LLVector4a& b);
// Return the 3D dot product of this vector and b
inline LLSimdScalar dot3(const LLVector4a& b) const;
// Return the 4D dot product of this vector and b
inline LLSimdScalar dot4(const LLVector4a& b) const;
// Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed
// Note that this does not consider zero length vectors!
inline void normalize3();
// Same as normalize3() but with respect to all 4 components
inline void normalize4();
// Same as normalize3(), but returns length as a SIMD scalar
inline LLSimdScalar normalize3withLength();
// Normalize this vector with respect to the x, y, and z components only. Accurate only to 10-12 bits of precision. W component is destroyed
// Note that this does not consider zero length vectors!
inline void normalize3fast();
// Normalize this vector with respect to the x, y, and z components only. Accurate only to 10-12 bits of precision. W component is destroyed
// Same as above except substitutes default vector contents if the vector is non-finite or degenerate due to zero length.
//
inline void normalize3fast_checked(LLVector4a* d = 0);
// Return true if this vector is normalized with respect to x,y,z up to tolerance
inline LLBool32 isNormalized3( F32 tolerance = 1e-3 ) const;
// Return true if this vector is normalized with respect to all components up to tolerance
inline LLBool32 isNormalized4( F32 tolerance = 1e-3 ) const;
// Set all elements to the length of vector 'v'
inline void setAllLength3( const LLVector4a& v );
// Get this vector's length
inline LLSimdScalar getLength3() const;
// Set the components of this vector to the minimum of the corresponding components of lhs and rhs
inline void setMin(const LLVector4a& lhs, const LLVector4a& rhs);
// Set the components of this vector to the maximum of the corresponding components of lhs and rhs
inline void setMax(const LLVector4a& lhs, const LLVector4a& rhs);
// Clamps this vector to be within the component-wise range low to high (inclusive)
inline void clamp( const LLVector4a& low, const LLVector4a& high );
// Set this to (c * lhs) + rhs * ( 1 - c)
inline void setLerp(const LLVector4a& lhs, const LLVector4a& rhs, F32 c);
// Return true (nonzero) if x, y, z (and w for Finite4) are all finite floats
inline LLBool32 isFinite3() const;
inline LLBool32 isFinite4() const;
// Set this vector to 'vec' rotated by the LLRotation or LLQuaternion2 provided
void setRotated( const LLRotation& rot, const LLVector4a& vec );
void setRotated( const class LLQuaternion2& quat, const LLVector4a& vec );
// Set this vector to 'vec' rotated by the INVERSE of the LLRotation or LLQuaternion2 provided
inline void setRotatedInv( const LLRotation& rot, const LLVector4a& vec );
inline void setRotatedInv( const class LLQuaternion2& quat, const LLVector4a& vec );
// Quantize this vector to 8 or 16 bit precision
void quantize8( const LLVector4a& low, const LLVector4a& high );
void quantize16( const LLVector4a& low, const LLVector4a& high );
////////////////////////////////////
// LOGICAL
////////////////////////////////////
// The functions in this section will compare the elements in this vector
// to those in rhs and return an LLVector4Logical with all bits set in elements
// where the comparison was true and all bits unset in elements where the comparison
// was false. See llvector4logica.h
////////////////////////////////////
// WARNING: Other than equals3 and equals4, these functions do NOT account
// for floating point tolerance. You should include the appropriate tolerance
// in the inputs.
////////////////////////////////////
inline LLVector4Logical greaterThan(const LLVector4a& rhs) const;
inline LLVector4Logical lessThan(const LLVector4a& rhs) const;
inline LLVector4Logical greaterEqual(const LLVector4a& rhs) const;
inline LLVector4Logical lessEqual(const LLVector4a& rhs) const;
inline LLVector4Logical equal(const LLVector4a& rhs) const;
// Returns true if this and rhs are componentwise equal up to the specified absolute tolerance
inline bool equals4(const LLVector4a& rhs, F32 tolerance = F_APPROXIMATELY_ZERO ) const;
inline bool equals3(const LLVector4a& rhs, F32 tolerance = F_APPROXIMATELY_ZERO ) const;
////////////////////////////////////
// OPERATORS
////////////////////////////////////
// Do NOT add aditional operators without consulting someone with SSE experience
inline const LLVector4a& operator= ( const LLVector4a& rhs );
inline const LLVector4a& operator= ( const LLQuad& rhs );
inline operator LLQuad() const;
private:
LLQuad mQ;
};
inline void update_min_max(LLVector4a& min, LLVector4a& max, const LLVector4a& p)
{
min.setMin(min, p);
max.setMax(max, p);
}
inline std::ostream& operator<<(std::ostream& s, const LLVector4a& v)
{
s << "(" << v[0] << ", " << v[1] << ", " << v[2] << ", " << v[3] << ")";
return s;
}
#endif
|