1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/**
* @file llvector4a.cpp
* @brief SIMD vector implementation
*
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llmemory.h"
#include "llmath.h"
#include "llquantize.h"
extern const LLQuad F_ZERO_4A = { 0, 0, 0, 0 };
extern const LLQuad F_APPROXIMATELY_ZERO_4A = {
F_APPROXIMATELY_ZERO,
F_APPROXIMATELY_ZERO,
F_APPROXIMATELY_ZERO,
F_APPROXIMATELY_ZERO
};
extern const LLVector4a LL_V4A_ZERO = reinterpret_cast<const LLVector4a&> ( F_ZERO_4A );
extern const LLVector4a LL_V4A_EPSILON = reinterpret_cast<const LLVector4a&> ( F_APPROXIMATELY_ZERO_4A );
/*static */void LLVector4a::memcpyNonAliased16(F32* __restrict dst, const F32* __restrict src, size_t bytes)
{
ll_memcpy_nonaliased_aligned_16((char*)dst, (char*)src, bytes);
}
void LLVector4a::setRotated( const LLRotation& rot, const LLVector4a& vec )
{
const LLVector4a col0 = rot.getColumn(0);
const LLVector4a col1 = rot.getColumn(1);
const LLVector4a col2 = rot.getColumn(2);
LLVector4a result = _mm_load_ss( vec.getF32ptr() );
result.splat<0>( result );
result.mul( col0 );
{
LLVector4a yyyy = _mm_load_ss( vec.getF32ptr() + 1 );
yyyy.splat<0>( yyyy );
yyyy.mul( col1 );
result.add( yyyy );
}
{
LLVector4a zzzz = _mm_load_ss( vec.getF32ptr() + 2 );
zzzz.splat<0>( zzzz );
zzzz.mul( col2 );
result.add( zzzz );
}
*this = result;
}
void LLVector4a::setRotated( const LLQuaternion2& quat, const LLVector4a& vec )
{
const LLVector4a& quatVec = quat.getVector4a();
LLVector4a temp; temp.setCross3(quatVec, vec);
temp.add( temp );
const LLVector4a realPart( quatVec.getScalarAt<3>() );
LLVector4a tempTimesReal; tempTimesReal.setMul( temp, realPart );
mQ = vec;
add( tempTimesReal );
LLVector4a imagCrossTemp; imagCrossTemp.setCross3( quatVec, temp );
add(imagCrossTemp);
}
void LLVector4a::quantize8( const LLVector4a& low, const LLVector4a& high )
{
LLVector4a val(mQ);
LLVector4a delta; delta.setSub( high, low );
{
val.clamp(low, high);
val.sub(low);
// 8-bit quantization means we can do with just 12 bits of reciprocal accuracy
const LLVector4a oneOverDelta = _mm_rcp_ps(delta.mQ);
// {
// static LL_ALIGN_16( const F32 F_TWO_4A[4] ) = { 2.f, 2.f, 2.f, 2.f };
// LLVector4a two; two.load4a( F_TWO_4A );
//
// // Here we use _mm_rcp_ps plus one round of newton-raphson
// // We wish to find 'x' such that x = 1/delta
// // As a first approximation, we take x0 = _mm_rcp_ps(delta)
// // Then x1 = 2 * x0 - a * x0^2 or x1 = x0 * ( 2 - a * x0 )
// // See Intel AP-803 http://ompf.org/!/Intel_application_note_AP-803.pdf
// const LLVector4a recipApprox = _mm_rcp_ps(delta.mQ);
// oneOverDelta.setMul( delta, recipApprox );
// oneOverDelta.setSub( two, oneOverDelta );
// oneOverDelta.mul( recipApprox );
// }
val.mul(oneOverDelta);
val.mul(*reinterpret_cast<const LLVector4a*>(F_U8MAX_4A));
}
val = _mm_cvtepi32_ps(_mm_cvtps_epi32( val.mQ ));
{
val.mul(*reinterpret_cast<const LLVector4a*>(F_OOU8MAX_4A));
val.mul(delta);
val.add(low);
}
{
LLVector4a maxError; maxError.setMul(delta, *reinterpret_cast<const LLVector4a*>(F_OOU8MAX_4A));
LLVector4a absVal; absVal.setAbs( val );
setSelectWithMask( absVal.lessThan( maxError ), F_ZERO_4A, val );
}
}
void LLVector4a::quantize16( const LLVector4a& low, const LLVector4a& high )
{
LLVector4a val(mQ);
LLVector4a delta; delta.setSub( high, low );
{
val.clamp(low, high);
val.sub(low);
// 16-bit quantization means we need a round of Newton-Raphson
LLVector4a oneOverDelta;
{
static LL_ALIGN_16( const F32 F_TWO_4A[4] ) = { 2.f, 2.f, 2.f, 2.f };
ll_assert_aligned(F_TWO_4A,16);
LLVector4a two; two.load4a( F_TWO_4A );
// Here we use _mm_rcp_ps plus one round of newton-raphson
// We wish to find 'x' such that x = 1/delta
// As a first approximation, we take x0 = _mm_rcp_ps(delta)
// Then x1 = 2 * x0 - a * x0^2 or x1 = x0 * ( 2 - a * x0 )
// See Intel AP-803 http://ompf.org/!/Intel_application_note_AP-803.pdf
const LLVector4a recipApprox = _mm_rcp_ps(delta.mQ);
oneOverDelta.setMul( delta, recipApprox );
oneOverDelta.setSub( two, oneOverDelta );
oneOverDelta.mul( recipApprox );
}
val.mul(oneOverDelta);
val.mul(*reinterpret_cast<const LLVector4a*>(F_U16MAX_4A));
}
val = _mm_cvtepi32_ps(_mm_cvtps_epi32( val.mQ ));
{
val.mul(*reinterpret_cast<const LLVector4a*>(F_OOU16MAX_4A));
val.mul(delta);
val.add(low);
}
{
LLVector4a maxError; maxError.setMul(delta, *reinterpret_cast<const LLVector4a*>(F_OOU16MAX_4A));
LLVector4a absVal; absVal.setAbs( val );
setSelectWithMask( absVal.lessThan( maxError ), F_ZERO_4A, val );
}
}
|