1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/**
* @file llviewerjointmesh.cpp
* @brief LLV4* class header file - vector processor enabled math
*
* $LicenseInfo:firstyear=2007&license=viewergpl$
*
* Copyright (c) 2007-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#ifndef LL_LLV4MATRIX4_H
#define LL_LLV4MATRIX4_H
#include "llv4math.h"
#include "llv4matrix3.h" // just for operator LLV4Matrix3()
#include "llv4vector3.h"
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// LLV4Matrix4
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
LL_LLV4MATH_ALIGN_PREFIX
class LLV4Matrix4
{
public:
union {
F32 mMatrix[LLV4_NUM_AXIS][LLV4_NUM_AXIS];
V4F32 mV[LLV4_NUM_AXIS];
};
void lerp(const LLV4Matrix4 &a, const LLV4Matrix4 &b, const F32 &w);
void multiply(const LLVector3 &a, LLVector3& o) const;
void multiply(const LLVector3 &a, LLV4Vector3& o) const;
const LLV4Matrix4& transpose();
const LLV4Matrix4& translate(const LLVector3 &vec);
const LLV4Matrix4& translate(const LLV4Vector3 &vec);
const LLV4Matrix4& operator=(const LLMatrix4& a);
operator LLMatrix4() const { return *(reinterpret_cast<const LLMatrix4*>(const_cast<const F32*>(&mMatrix[0][0]))); }
operator LLV4Matrix3() const { return *(reinterpret_cast<const LLV4Matrix3*>(const_cast<const F32*>(&mMatrix[0][0]))); }
friend LLVector3 operator*(const LLVector3 &a, const LLV4Matrix4 &b);
}
LL_LLV4MATH_ALIGN_POSTFIX;
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// LLV4Matrix4 - SSE
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#if LL_VECTORIZE
inline void LLV4Matrix4::lerp(const LLV4Matrix4 &a, const LLV4Matrix4 &b, const F32 &w)
{
__m128 vw = _mm_set1_ps(w);
mV[VX] = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(b.mV[VX], a.mV[VX]), vw), a.mV[VX]); // ( b - a ) * w + a
mV[VY] = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(b.mV[VY], a.mV[VY]), vw), a.mV[VY]);
mV[VZ] = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(b.mV[VZ], a.mV[VZ]), vw), a.mV[VZ]);
mV[VW] = _mm_add_ps(_mm_mul_ps(_mm_sub_ps(b.mV[VW], a.mV[VW]), vw), a.mV[VW]);
}
inline void LLV4Matrix4::multiply(const LLVector3 &a, LLVector3& o) const
{
LLV4Vector3 j;
j.v = _mm_add_ps(mV[VW], _mm_mul_ps(_mm_set1_ps(a.mV[VX]), mV[VX])); // ( ax * vx ) + vw
j.v = _mm_add_ps(j.v , _mm_mul_ps(_mm_set1_ps(a.mV[VY]), mV[VY]));
j.v = _mm_add_ps(j.v , _mm_mul_ps(_mm_set1_ps(a.mV[VZ]), mV[VZ]));
o.setVec(j.mV);
}
inline void LLV4Matrix4::multiply(const LLVector3 &a, LLV4Vector3& o) const
{
o.v = _mm_add_ps(mV[VW], _mm_mul_ps(_mm_set1_ps(a.mV[VX]), mV[VX])); // ( ax * vx ) + vw
o.v = _mm_add_ps(o.v , _mm_mul_ps(_mm_set1_ps(a.mV[VY]), mV[VY]));
o.v = _mm_add_ps(o.v , _mm_mul_ps(_mm_set1_ps(a.mV[VZ]), mV[VZ]));
}
inline const LLV4Matrix4& LLV4Matrix4::translate(const LLV4Vector3 &vec)
{
mV[VW] = _mm_add_ps(mV[VW], vec.v);
return (*this);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// LLV4Matrix4
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#else
inline void LLV4Matrix4::lerp(const LLV4Matrix4 &a, const LLV4Matrix4 &b, const F32 &w)
{
mMatrix[VX][VX] = llv4lerp(a.mMatrix[VX][VX], b.mMatrix[VX][VX], w);
mMatrix[VX][VY] = llv4lerp(a.mMatrix[VX][VY], b.mMatrix[VX][VY], w);
mMatrix[VX][VZ] = llv4lerp(a.mMatrix[VX][VZ], b.mMatrix[VX][VZ], w);
mMatrix[VY][VX] = llv4lerp(a.mMatrix[VY][VX], b.mMatrix[VY][VX], w);
mMatrix[VY][VY] = llv4lerp(a.mMatrix[VY][VY], b.mMatrix[VY][VY], w);
mMatrix[VY][VZ] = llv4lerp(a.mMatrix[VY][VZ], b.mMatrix[VY][VZ], w);
mMatrix[VZ][VX] = llv4lerp(a.mMatrix[VZ][VX], b.mMatrix[VZ][VX], w);
mMatrix[VZ][VY] = llv4lerp(a.mMatrix[VZ][VY], b.mMatrix[VZ][VY], w);
mMatrix[VZ][VZ] = llv4lerp(a.mMatrix[VZ][VZ], b.mMatrix[VZ][VZ], w);
mMatrix[VW][VX] = llv4lerp(a.mMatrix[VW][VX], b.mMatrix[VW][VX], w);
mMatrix[VW][VY] = llv4lerp(a.mMatrix[VW][VY], b.mMatrix[VW][VY], w);
mMatrix[VW][VZ] = llv4lerp(a.mMatrix[VW][VZ], b.mMatrix[VW][VZ], w);
}
inline void LLV4Matrix4::multiply(const LLVector3 &a, LLVector3& o) const
{
o.setVec( a.mV[VX] * mMatrix[VX][VX] +
a.mV[VY] * mMatrix[VY][VX] +
a.mV[VZ] * mMatrix[VZ][VX] +
mMatrix[VW][VX],
a.mV[VX] * mMatrix[VX][VY] +
a.mV[VY] * mMatrix[VY][VY] +
a.mV[VZ] * mMatrix[VZ][VY] +
mMatrix[VW][VY],
a.mV[VX] * mMatrix[VX][VZ] +
a.mV[VY] * mMatrix[VY][VZ] +
a.mV[VZ] * mMatrix[VZ][VZ] +
mMatrix[VW][VZ]);
}
inline void LLV4Matrix4::multiply(const LLVector3 &a, LLV4Vector3& o) const
{
o.setVec( a.mV[VX] * mMatrix[VX][VX] +
a.mV[VY] * mMatrix[VY][VX] +
a.mV[VZ] * mMatrix[VZ][VX] +
mMatrix[VW][VX],
a.mV[VX] * mMatrix[VX][VY] +
a.mV[VY] * mMatrix[VY][VY] +
a.mV[VZ] * mMatrix[VZ][VY] +
mMatrix[VW][VY],
a.mV[VX] * mMatrix[VX][VZ] +
a.mV[VY] * mMatrix[VY][VZ] +
a.mV[VZ] * mMatrix[VZ][VZ] +
mMatrix[VW][VZ]);
}
inline const LLV4Matrix4& LLV4Matrix4::translate(const LLV4Vector3 &vec)
{
mMatrix[3][0] += vec.mV[0];
mMatrix[3][1] += vec.mV[1];
mMatrix[3][2] += vec.mV[2];
return (*this);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// LLV4Matrix4
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#endif
inline const LLV4Matrix4& LLV4Matrix4::operator=(const LLMatrix4& a)
{
memcpy(mMatrix, a.mMatrix, sizeof(F32) * 16 );
return *this;
}
inline const LLV4Matrix4& LLV4Matrix4::transpose()
{
#if LL_VECTORIZE && defined(_MM_TRANSPOSE4_PS)
_MM_TRANSPOSE4_PS(mV[VX], mV[VY], mV[VZ], mV[VW]);
#else
LLV4Matrix4 mat;
mat.mMatrix[0][0] = mMatrix[0][0];
mat.mMatrix[1][0] = mMatrix[0][1];
mat.mMatrix[2][0] = mMatrix[0][2];
mat.mMatrix[3][0] = mMatrix[0][3];
mat.mMatrix[0][1] = mMatrix[1][0];
mat.mMatrix[1][1] = mMatrix[1][1];
mat.mMatrix[2][1] = mMatrix[1][2];
mat.mMatrix[3][1] = mMatrix[1][3];
mat.mMatrix[0][2] = mMatrix[2][0];
mat.mMatrix[1][2] = mMatrix[2][1];
mat.mMatrix[2][2] = mMatrix[2][2];
mat.mMatrix[3][2] = mMatrix[2][3];
mat.mMatrix[0][3] = mMatrix[3][0];
mat.mMatrix[1][3] = mMatrix[3][1];
mat.mMatrix[2][3] = mMatrix[3][2];
mat.mMatrix[3][3] = mMatrix[3][3];
*this = mat;
#endif
return *this;
}
inline const LLV4Matrix4& LLV4Matrix4::translate(const LLVector3 &vec)
{
mMatrix[3][0] += vec.mV[0];
mMatrix[3][1] += vec.mV[1];
mMatrix[3][2] += vec.mV[2];
return (*this);
}
inline LLVector3 operator*(const LLVector3 &a, const LLV4Matrix4 &b)
{
return LLVector3(a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX] +
b.mMatrix[VW][VX],
a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY] +
b.mMatrix[VW][VY],
a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] +
b.mMatrix[VW][VZ]);
}
#endif
|