1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
/**
* @file llplane.h
*
* $LicenseInfo:firstyear=2001&license=viewergpl$
*
* Copyright (c) 2001-2007, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#ifndef LL_LLPLANE_H
#define LL_LLPLANE_H
#include "v3math.h"
#include "v4math.h"
// A simple way to specify a plane is to give its normal,
// and it's nearest approach to the origin.
//
// Given the equation for a plane : A*x + B*y + C*z + D = 0
// The plane normal = [A, B, C]
// The closest approach = D / sqrt(A*A + B*B + C*C)
class LLPlane : public LLVector4
{
public:
LLPlane() {}; // no default constructor
LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); }
LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); }
void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); }
void setVec(const LLVector3 &p0, const LLVector3 &n)
{
F32 d = -(p0 * n);
setVec(n, d);
}
void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2)
{
LLVector3 u, v, w;
u = p1 - p0;
v = p2 - p0;
w = u % v;
w.normVec();
F32 d = -(w * p0);
setVec(w, d);
}
LLPlane& operator=(const LLVector4& v2) { LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;}
F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; }
};
#endif // LL_LLPLANE_H
|