1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/**
* @file llmatrix4a.h
* @brief LLMatrix4a class header file - memory aligned and vectorized 4x4 matrix
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLMATRIX4A_H
#define LL_LLMATRIX4A_H
#include "llvector4a.h"
#include "m4math.h"
#include "m3math.h"
class LLMatrix4a
{
public:
LL_ALIGN_16(LLVector4a mMatrix[4]);
inline void clear()
{
mMatrix[0].clear();
mMatrix[1].clear();
mMatrix[2].clear();
mMatrix[3].clear();
}
inline void loadu(const LLMatrix4& src)
{
mMatrix[0] = _mm_loadu_ps(src.mMatrix[0]);
mMatrix[1] = _mm_loadu_ps(src.mMatrix[1]);
mMatrix[2] = _mm_loadu_ps(src.mMatrix[2]);
mMatrix[3] = _mm_loadu_ps(src.mMatrix[3]);
}
inline void loadu(const LLMatrix3& src)
{
mMatrix[0].load3(src.mMatrix[0]);
mMatrix[1].load3(src.mMatrix[1]);
mMatrix[2].load3(src.mMatrix[2]);
mMatrix[3].set(0,0,0,1.f);
}
inline void add(const LLMatrix4a& rhs)
{
mMatrix[0].add(rhs.mMatrix[0]);
mMatrix[1].add(rhs.mMatrix[1]);
mMatrix[2].add(rhs.mMatrix[2]);
mMatrix[3].add(rhs.mMatrix[3]);
}
inline void setRows(const LLVector4a& r0, const LLVector4a& r1, const LLVector4a& r2)
{
mMatrix[0] = r0;
mMatrix[1] = r1;
mMatrix[2] = r2;
}
inline void setMul(const LLMatrix4a& m, const F32 s)
{
mMatrix[0].setMul(m.mMatrix[0], s);
mMatrix[1].setMul(m.mMatrix[1], s);
mMatrix[2].setMul(m.mMatrix[2], s);
mMatrix[3].setMul(m.mMatrix[3], s);
}
inline void setLerp(const LLMatrix4a& a, const LLMatrix4a& b, F32 w)
{
LLVector4a d0,d1,d2,d3;
d0.setSub(b.mMatrix[0], a.mMatrix[0]);
d1.setSub(b.mMatrix[1], a.mMatrix[1]);
d2.setSub(b.mMatrix[2], a.mMatrix[2]);
d3.setSub(b.mMatrix[3], a.mMatrix[3]);
// this = a + d*w
d0.mul(w);
d1.mul(w);
d2.mul(w);
d3.mul(w);
mMatrix[0].setAdd(a.mMatrix[0],d0);
mMatrix[1].setAdd(a.mMatrix[1],d1);
mMatrix[2].setAdd(a.mMatrix[2],d2);
mMatrix[3].setAdd(a.mMatrix[3],d3);
}
inline void rotate(const LLVector4a& v, LLVector4a& res)
{
LLVector4a y,z;
res = _mm_shuffle_ps(v, v, _MM_SHUFFLE(0, 0, 0, 0));
y = _mm_shuffle_ps(v, v, _MM_SHUFFLE(1, 1, 1, 1));
z = _mm_shuffle_ps(v, v, _MM_SHUFFLE(2, 2, 2, 2));
res.mul(mMatrix[0]);
y.mul(mMatrix[1]);
z.mul(mMatrix[2]);
res.add(y);
res.add(z);
}
inline void affineTransformSSE(const LLVector4a& v, LLVector4a& res)
{
LLVector4a x,y,z;
x = _mm_shuffle_ps(v, v, _MM_SHUFFLE(0, 0, 0, 0));
y = _mm_shuffle_ps(v, v, _MM_SHUFFLE(1, 1, 1, 1));
z = _mm_shuffle_ps(v, v, _MM_SHUFFLE(2, 2, 2, 2));
x.mul(mMatrix[0]);
y.mul(mMatrix[1]);
z.mul(mMatrix[2]);
x.add(y);
z.add(mMatrix[3]);
res.setAdd(x,z);
}
inline void affineTransformNonSSE(const LLVector4a& v, LLVector4a& res)
{
F32 x = v[0] * mMatrix[0][0] + v[1] * mMatrix[1][0] + v[2] * mMatrix[2][0] + mMatrix[3][0];
F32 y = v[0] * mMatrix[0][1] + v[1] * mMatrix[1][1] + v[2] * mMatrix[2][1] + mMatrix[3][1];
F32 z = v[0] * mMatrix[0][2] + v[1] * mMatrix[1][2] + v[2] * mMatrix[2][2] + mMatrix[3][2];
F32 w = 1.0f;
res.set(x,y,z,w);
}
inline void affineTransform(const LLVector4a& v, LLVector4a& res)
{
affineTransformSSE(v,res);
}
};
inline LLVector4a rowMul(const LLVector4a &row, const LLMatrix4a &mat)
{
LLVector4a result;
result = _mm_mul_ps(_mm_shuffle_ps(row, row, _MM_SHUFFLE(0, 0, 0, 0)), mat.mMatrix[0]);
result = _mm_add_ps(result, _mm_mul_ps(_mm_shuffle_ps(row, row, _MM_SHUFFLE(1, 1, 1, 1)), mat.mMatrix[1]));
result = _mm_add_ps(result, _mm_mul_ps(_mm_shuffle_ps(row, row, _MM_SHUFFLE(2, 2, 2, 2)), mat.mMatrix[2]));
result = _mm_add_ps(result, _mm_mul_ps(_mm_shuffle_ps(row, row, _MM_SHUFFLE(3, 3, 3, 3)), mat.mMatrix[3]));
return result;
}
inline void matMul(const LLMatrix4a &a, const LLMatrix4a &b, LLMatrix4a &res)
{
LLVector4a row0 = rowMul(a.mMatrix[0], b);
LLVector4a row1 = rowMul(a.mMatrix[1], b);
LLVector4a row2 = rowMul(a.mMatrix[2], b);
LLVector4a row3 = rowMul(a.mMatrix[3], b);
res.mMatrix[0] = row0;
res.mMatrix[1] = row1;
res.mMatrix[2] = row2;
res.mMatrix[3] = row3;
}
#endif
|