1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
|
/**
* @file llimagej2ckdu.cpp
* @brief This is an implementation of JPEG2000 encode/decode using Kakadu
*
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llimagej2ckdu.h"
// KDU utility functions.
#include "kde_flow_control.h"
#include "kdc_flow_control.h"
#include "lltimer.h"
#include "llpointer.h"
#include "llkdumem.h"
//
// Kakadu specific implementation
//
void set_default_colour_weights(kdu_params *siz);
const char* engineInfoLLImageJ2CKDU()
{
return "KDU";
}
LLImageJ2CKDU* createLLImageJ2CKDU()
{
return new LLImageJ2CKDU();
}
void destroyLLImageJ2CKDU(LLImageJ2CKDU* kdu)
{
delete kdu;
kdu = NULL;
}
LLImageJ2CImpl* fallbackCreateLLImageJ2CImpl()
{
return new LLImageJ2CKDU();
}
void fallbackDestroyLLImageJ2CImpl(LLImageJ2CImpl* impl)
{
delete impl;
impl = NULL;
}
const char* fallbackEngineInfoLLImageJ2CImpl()
{
return engineInfoLLImageJ2CKDU();
}
class LLKDUDecodeState
{
public:
S32 mNumComponents;
BOOL mUseYCC;
kdu_dims mDims;
kdu_sample_allocator mAllocator;
kdu_tile_comp mComps[4];
kdu_line_buf mLines[4];
kdu_pull_ifc mEngines[4];
bool mReversible[4]; // Some components may be reversible and others not.
int mBitDepths[4]; // Original bit-depth may be quite different from 8.
kdu_tile mTile;
kdu_byte *mBuf;
S32 mRowGap;
LLKDUDecodeState(kdu_tile tile, kdu_byte *buf, S32 row_gap);
~LLKDUDecodeState();
BOOL processTileDecode(F32 decode_time, BOOL limit_time = TRUE);
public:
int *AssignLayerBytes(siz_params *siz, int &num_specs);
void setupCodeStream(BOOL keep_codestream, LLImageJ2CKDU::ECodeStreamMode mode);
BOOL initDecode(LLImageRaw &raw_image, F32 decode_time, LLImageJ2CKDU::ECodeStreamMode mode, S32 first_channel, S32 max_channel_count );
};
void ll_kdu_error( void )
{
// *FIX: This exception is bad, bad, bad. It gets thrown from a
// destructor which can lead imediate program termination!
throw "ll_kdu_error() throwing an exception";
}
// Stuff for new kdu error handling.
class LLKDUMessageWarning : public kdu_message
{
public:
/*virtual*/ void put_text(const char *string);
static LLKDUMessageWarning sDefaultMessage;
};
class LLKDUMessageError : public kdu_message
{
public:
/*virtual*/ void put_text(const char *string);
/*virtual*/ void flush(bool end_of_message=false);
static LLKDUMessageError sDefaultMessage;
};
void LLKDUMessageWarning::put_text(const char *s)
{
llinfos << "KDU Warning: " << s << llendl;
}
void LLKDUMessageError::put_text(const char *s)
{
llinfos << "KDU Error: " << s << llendl;
}
void LLKDUMessageError::flush(bool end_of_message)
{
if( end_of_message )
{
throw "KDU throwing an exception";
}
}
LLKDUMessageWarning LLKDUMessageWarning::sDefaultMessage;
LLKDUMessageError LLKDUMessageError::sDefaultMessage;
static bool kdu_message_initialized = false;
LLImageJ2CKDU::LLImageJ2CKDU() : LLImageJ2CImpl(),
mInputp(NULL),
mCodeStreamp(NULL),
mTPosp(NULL),
mTileIndicesp(NULL),
mRawImagep(NULL),
mDecodeState(NULL)
{
}
LLImageJ2CKDU::~LLImageJ2CKDU()
{
cleanupCodeStream(); // in case destroyed before decode completed
}
// Stuff for new simple decode
void transfer_bytes(kdu_byte *dest, kdu_line_buf &src, int gap, int precision);
void LLImageJ2CKDU::setupCodeStream(LLImageJ2C &base, BOOL keep_codestream, ECodeStreamMode mode)
{
S32 data_size = base.getDataSize();
S32 max_bytes = base.getMaxBytes() ? base.getMaxBytes() : data_size;
//////////////
//
// Initialization
//
if (!kdu_message_initialized)
{
kdu_message_initialized = true;
kdu_customize_errors(&LLKDUMessageError::sDefaultMessage);
kdu_customize_warnings(&LLKDUMessageWarning::sDefaultMessage);
}
if (mCodeStreamp)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
}
if (!mInputp)
{
llassert(base.getData());
// The compressed data has been loaded.
// Setup the source for the codestrea
mInputp = new LLKDUMemSource(base.getData(), data_size);
}
llassert(mInputp);
mInputp->reset();
mCodeStreamp = new kdu_codestream;
mCodeStreamp->create(mInputp);
// Set the maximum number of bytes to use from the codestrea
mCodeStreamp->set_max_bytes(max_bytes);
// If you want to flip or rotate the image for some reason, change
// the resolution, or identify a restricted region of interest, this is
// the place to do it. You may use "kdu_codestream::change_appearance"
// and "kdu_codestream::apply_input_restrictions" for this purpose.
// If you wish to truncate the code-stream prior to decompression, you
// may use "kdu_codestream::set_max_bytes".
// If you wish to retain all compressed data so that the material
// can be decompressed multiple times, possibly with different appearance
// parameters, you should call "kdu_codestream::set_persistent" here.
// There are a variety of other features which must be enabled at
// this point if you want to take advantage of the See the
// descriptions appearing with the "kdu_codestream" interface functions
// in "kdu_compressed.h" for an itemized account of these capabilities.
switch( mode )
{
case MODE_FAST:
mCodeStreamp->set_fast();
break;
case MODE_RESILIENT:
mCodeStreamp->set_resilient();
break;
case MODE_FUSSY:
mCodeStreamp->set_fussy();
break;
default:
llassert(0);
mCodeStreamp->set_fast();
}
kdu_dims dims;
mCodeStreamp->get_dims(0,dims);
S32 components = mCodeStreamp->get_num_components();
if (components >= 3)
{ // Check that components have consistent dimensions (for PPM file)
kdu_dims dims1; mCodeStreamp->get_dims(1,dims1);
kdu_dims dims2; mCodeStreamp->get_dims(2,dims2);
if ((dims1 != dims) || (dims2 != dims))
{
llerrs << "Components don't have matching dimensions!" << llendl;
}
}
base.setSize(dims.size.x, dims.size.y, components);
if (!keep_codestream)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
delete mInputp;
mInputp = NULL;
}
}
void LLImageJ2CKDU::cleanupCodeStream()
{
delete mInputp;
mInputp = NULL;
delete mDecodeState;
mDecodeState = NULL;
if (mCodeStreamp)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
}
delete mTPosp;
mTPosp = NULL;
delete mTileIndicesp;
mTileIndicesp = NULL;
}
BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 decode_time, ECodeStreamMode mode, S32 first_channel, S32 max_channel_count )
{
base.resetLastError();
// *FIX: kdu calls our callback function if there's an error, and then bombs.
// To regain control, we throw an exception, and catch it here.
try
{
base.updateRawDiscardLevel();
setupCodeStream(base, TRUE, mode);
/*
//
// Not being used OpenJPEG doesn't support it, just deprecate it.
//
// Find the Linden Lab comment in the chain of comments
kdu_codestream_comment comment;
comment = mCodeStreamp->get_comment();
while (comment.get_text())
{
const char* text = comment.get_text();
if( text == strstr( text, LINDEN_J2C_COMMENT_PREFIX) )
{
mCommentText = text;
break;
}
//llinfos << "CS comment: " << comment.get_text() << llendl;
comment = mCodeStreamp->get_comment(comment);
}
*/
mRawImagep = &raw_image;
mCodeStreamp->change_appearance(false, true, false);
mCodeStreamp->apply_input_restrictions(first_channel,max_channel_count,base.getRawDiscardLevel(),0,NULL);
kdu_dims dims; mCodeStreamp->get_dims(0,dims);
S32 channels = base.getComponents() - first_channel;
if( channels > max_channel_count )
{
channels = max_channel_count;
}
raw_image.resize(dims.size.x, dims.size.y, channels);
// llinfos << "Resizing to " << dims.size.x << ":" << dims.size.y << llendl;
if (!mTileIndicesp)
{
mTileIndicesp = new kdu_dims;
}
mCodeStreamp->get_valid_tiles(*mTileIndicesp);
if (!mTPosp)
{
mTPosp = new kdu_coords;
mTPosp->y = 0;
mTPosp->x = 0;
}
}
catch (const char* msg)
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
catch (...)
{
base.setLastError("Unknown J2C error");
return FALSE;
}
return TRUE;
}
// Returns TRUE to mean done, whether successful or not.
BOOL LLImageJ2CKDU::decodeImpl(LLImageJ2C &base, LLImageRaw &raw_image, F32 decode_time, S32 first_channel, S32 max_channel_count)
{
ECodeStreamMode mode = MODE_FAST;
LLTimer decode_timer;
if (!mCodeStreamp)
{
if (!initDecode(base, raw_image, decode_time, mode, first_channel, max_channel_count))
{
// Initializing the J2C decode failed, bail out.
cleanupCodeStream();
return TRUE; // done
}
}
// These can probably be grabbed from what's saved in the class.
kdu_dims dims;
mCodeStreamp->get_dims(0,dims);
// Now we are ready to walk through the tiles processing them one-by-one.
kdu_byte *buffer = raw_image.getData();
while (mTPosp->y < mTileIndicesp->size.y)
{
while (mTPosp->x < mTileIndicesp->size.x)
{
try
{
if (!mDecodeState)
{
kdu_tile tile = mCodeStreamp->open_tile(*(mTPosp)+mTileIndicesp->pos);
// Find the region of the buffer occupied by this
// tile. Note that we have no control over
// sub-sampling factors which might have been used
// during compression and so it can happen that tiles
// (at the image component level) actually have
// different dimensions. For this reason, we cannot
// figure out the buffer region occupied by a tile
// directly from the tile indices. Instead, we query
// the highest resolution of the first tile-component
// concerning its location and size on the canvas --
// the `dims' object already holds the location and
// size of the entire image component on the same
// canvas coordinate system. Comparing the two tells
// us where the current tile is in the buffer.
S32 channels = base.getComponents() - first_channel;
if( channels > max_channel_count )
{
channels = max_channel_count;
}
kdu_resolution res = tile.access_component(0).access_resolution();
kdu_dims tile_dims; res.get_dims(tile_dims);
kdu_coords offset = tile_dims.pos - dims.pos;
int row_gap = channels*dims.size.x; // inter-row separation
kdu_byte *buf = buffer + offset.y*row_gap + offset.x*channels;
mDecodeState = new LLKDUDecodeState(tile, buf, row_gap);
}
// Do the actual processing
F32 remaining_time = decode_time - decode_timer.getElapsedTimeF32();
// This is where we do the actual decode. If we run out of time, return false.
if (mDecodeState->processTileDecode(remaining_time, (decode_time > 0.0f)))
{
delete mDecodeState;
mDecodeState = NULL;
}
else
{
// Not finished decoding yet.
// setLastError("Ran out of time while decoding");
return FALSE;
}
}
catch( const char* msg )
{
base.setLastError(ll_safe_string(msg));
base.decodeFailed();
cleanupCodeStream();
return TRUE; // done
}
catch( ... )
{
base.setLastError( "Unknown J2C error" );
base.decodeFailed();
cleanupCodeStream();
return TRUE; // done
}
mTPosp->x++;
}
mTPosp->y++;
mTPosp->x = 0;
}
cleanupCodeStream();
return TRUE;
}
BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, const char* comment_text, F32 encode_time, BOOL reversible)
{
// Collect simple arguments.
bool transpose, vflip, hflip;
bool allow_rate_prediction, allow_shorts, mem, quiet, no_weights;
int cpu_iterations;
std::ostream *record_stream;
transpose = false;
record_stream = NULL;
allow_rate_prediction = true;
allow_shorts = true;
no_weights = false;
cpu_iterations = -1;
mem = false;
quiet = false;
vflip = true;
hflip = false;
try
{
// Set up input image files.
siz_params siz;
// Should set rate someplace here.
LLKDUMemIn mem_in(raw_image.getData(),
raw_image.getDataSize(),
raw_image.getWidth(),
raw_image.getHeight(),
raw_image.getComponents(),
&siz);
base.setSize(raw_image.getWidth(), raw_image.getHeight(), raw_image.getComponents());
int num_components = raw_image.getComponents();
siz.set(Scomponents,0,0,num_components);
siz.set(Sdims,0,0,base.getHeight()); // Height of first image component
siz.set(Sdims,0,1,base.getWidth()); // Width of first image component
siz.set(Sprecision,0,0,8); // Image samples have original bit-depth of 8
siz.set(Ssigned,0,0,false); // Image samples are originally unsigned
kdu_params *siz_ref = &siz; siz_ref->finalize();
siz_params transformed_siz; // Use this one to construct code-strea
transformed_siz.copy_from(&siz,-1,-1,-1,0,transpose,false,false);
// Construct the `kdu_codestream' object and parse all remaining arguments.
U32 max_output_size = base.getWidth()*base.getHeight()*base.getComponents();
if (max_output_size < 1000)
{
max_output_size = 1000;
}
U8 *output_buffer = new U8[max_output_size];
U32 output_size = max_output_size; // gets modified
LLKDUMemTarget output(output_buffer, output_size, base.getWidth()*base.getHeight()*base.getComponents());
if (output_size > max_output_size)
{
llerrs << llformat("LLImageJ2C::encode output_size(%d) > max_output_size(%d)",
output_size,max_output_size) << llendl;
}
kdu_codestream codestream;
codestream.create(&transformed_siz,&output);
if (comment_text)
{
// Set the comments for the codestream
kdu_codestream_comment comment = codestream.add_comment();
comment.put_text(comment_text);
}
// Set codestream options
int num_layer_specs = 0;
kdu_long layer_bytes[64];
U32 max_bytes = 0;
if ((num_components >= 3) && !no_weights)
{
set_default_colour_weights(codestream.access_siz());
}
if (reversible)
{
// If we're doing reversible, assume we're not using quality layers.
// Yes, I know this is incorrect!
codestream.access_siz()->parse_string("Creversible=yes");
codestream.access_siz()->parse_string("Clayers=1");
num_layer_specs = 1;
layer_bytes[0] = 0;
}
else
{
// Rate is the argument passed into the LLImageJ2C which
// specifies the target compression rate. The default is 8:1.
// Possibly if max_bytes < 500, we should just use the default setting?
if (base.mRate != 0.f)
{
max_bytes = (U32)(base.mRate*base.getWidth()*base.getHeight()*base.getComponents());
}
else
{
max_bytes = (U32)(base.getWidth()*base.getHeight()*base.getComponents()*0.125);
}
const U32 min_bytes = FIRST_PACKET_SIZE;
if (max_bytes > min_bytes)
{
U32 i;
// This code is where we specify the target number of bytes for
// each layer. Not sure if we should do this for small images
// or not. The goal is to have this roughly align with
// different quality levels that we decode at.
for (i = min_bytes; i < max_bytes; i*=4)
{
if (i == min_bytes * 4)
{
i = 2000;
}
layer_bytes[num_layer_specs] = i;
num_layer_specs++;
}
layer_bytes[num_layer_specs] = max_bytes;
num_layer_specs++;
std::string layer_string = llformat("Clayers=%d",num_layer_specs);
codestream.access_siz()->parse_string(layer_string.c_str());
}
else
{
layer_bytes[0] = min_bytes;
num_layer_specs = 1;
std::string layer_string = llformat("Clayers=%d",num_layer_specs);
codestream.access_siz()->parse_string(layer_string.c_str());
}
}
codestream.access_siz()->finalize_all();
if (cpu_iterations >= 0)
{
codestream.collect_timing_stats(cpu_iterations);
}
codestream.change_appearance(transpose,vflip,hflip);
// Now we are ready for sample data processing.
int x_tnum;
kdu_dims tile_indices; codestream.get_valid_tiles(tile_indices);
kdc_flow_control **tile_flows = new kdc_flow_control *[tile_indices.size.x];
for (x_tnum=0; x_tnum < tile_indices.size.x; x_tnum++)
{
tile_flows[x_tnum] = new kdc_flow_control(&mem_in,codestream,x_tnum,allow_shorts);
}
bool done = false;
while (!done)
{
while (!done)
{ // Process a row of tiles line by line.
done = true;
for (x_tnum=0; x_tnum < tile_indices.size.x; x_tnum++)
{
if (tile_flows[x_tnum]->advance_components())
{
done = false;
tile_flows[x_tnum]->process_components();
}
}
}
for (x_tnum=0; x_tnum < tile_indices.size.x; x_tnum++)
{
if (tile_flows[x_tnum]->advance_tile())
{
done = false;
}
}
}
int sample_bytes = 0;
for (x_tnum=0; x_tnum < tile_indices.size.x; x_tnum++)
{
sample_bytes += tile_flows[x_tnum]->get_buffer_memory();
delete tile_flows[x_tnum];
}
delete [] tile_flows;
// Produce the compressed output.
codestream.flush(layer_bytes,num_layer_specs, NULL, true, false);
// Cleanup
codestream.destroy();
if (record_stream != NULL)
{
delete record_stream;
}
// Now that we're done encoding, create the new data buffer for the compressed
// image and stick it there.
base.copyData(output_buffer, output_size);
base.updateData(); // set width, height
delete[] output_buffer;
}
catch(const char* msg)
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
catch( ... )
{
base.setLastError( "Unknown J2C error" );
return FALSE;
}
return TRUE;
}
BOOL LLImageJ2CKDU::getMetadata(LLImageJ2C &base)
{
// *FIX: kdu calls our callback function if there's an error, and
// then bombs. To regain control, we throw an exception, and
// catch it here.
try
{
setupCodeStream(base, FALSE, MODE_FAST);
return TRUE;
}
catch( const char* msg )
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
catch( ... )
{
base.setLastError( "Unknown J2C error" );
return FALSE;
}
}
void set_default_colour_weights(kdu_params *siz)
{
kdu_params *cod = siz->access_cluster(COD_params);
assert(cod != NULL);
bool can_use_ycc = true;
bool rev0=false;
int depth0=0, sub_x0=1, sub_y0=1;
for (int c=0; c < 3; c++)
{
int depth=0; siz->get(Sprecision,c,0,depth);
int sub_y=1; siz->get(Ssampling,c,0,sub_y);
int sub_x=1; siz->get(Ssampling,c,1,sub_x);
kdu_params *coc = cod->access_relation(-1,c);
bool rev=false; coc->get(Creversible,0,0,rev);
if (c == 0)
{ rev0=rev; depth0=depth; sub_x0=sub_x; sub_y0=sub_y; }
else if ((rev != rev0) || (depth != depth0) ||
(sub_x != sub_x0) || (sub_y != sub_y0))
can_use_ycc = false;
}
if (!can_use_ycc)
return;
bool use_ycc;
if (!cod->get(Cycc,0,0,use_ycc))
cod->set(Cycc,0,0,use_ycc=true);
if (!use_ycc)
return;
float weight;
if (cod->get(Clev_weights,0,0,weight) ||
cod->get(Cband_weights,0,0,weight))
return; // Weights already specified explicitly.
/* These example weights are adapted from numbers generated by Marcus Nadenau
at EPFL, for a viewing distance of 15 cm and a display resolution of
300 DPI. */
cod->parse_string("Cband_weights:C0="
"{0.0901},{0.2758},{0.2758},"
"{0.7018},{0.8378},{0.8378},{1}");
cod->parse_string("Cband_weights:C1="
"{0.0263},{0.0863},{0.0863},"
"{0.1362},{0.2564},{0.2564},"
"{0.3346},{0.4691},{0.4691},"
"{0.5444},{0.6523},{0.6523},"
"{0.7078},{0.7797},{0.7797},{1}");
cod->parse_string("Cband_weights:C2="
"{0.0773},{0.1835},{0.1835},"
"{0.2598},{0.4130},{0.4130},"
"{0.5040},{0.6464},{0.6464},"
"{0.7220},{0.8254},{0.8254},"
"{0.8769},{0.9424},{0.9424},{1}");
}
/******************************************************************************/
/* transfer_bytes */
/******************************************************************************/
void transfer_bytes(kdu_byte *dest, kdu_line_buf &src, int gap, int precision)
/* Transfers source samples from the supplied line buffer into the output
byte buffer, spacing successive output samples apart by `gap' bytes
(to allow for interleaving of colour components). The function performs
all necessary level shifting, type conversion, rounding and truncation. */
{
int width = src.get_width();
if (src.get_buf32() != NULL)
{ // Decompressed samples have a 32-bit representation (integer or float)
assert(precision >= 8); // Else would have used 16 bit representation
kdu_sample32 *sp = src.get_buf32();
if (!src.is_absolute())
{ // Transferring normalized floating point data.
float scale16 = (float)(1<<16);
kdu_int32 val;
for (; width > 0; width--, sp++, dest+=gap)
{
val = (kdu_int32)(sp->fval*scale16);
val = (val+128)>>8; // May be faster than true rounding
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:255;
}
*dest = (kdu_byte) val;
}
}
else
{ // Transferring 32-bit absolute integers.
kdu_int32 val;
kdu_int32 downshift = precision-8;
kdu_int32 offset = (1<<downshift)>>1;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:255;
}
*dest = (kdu_byte) val;
}
}
}
else
{ // Source data is 16 bits.
kdu_sample16 *sp = src.get_buf16();
if (!src.is_absolute())
{ // Transferring 16-bit fixed point quantities
kdu_int16 val;
if (precision >= 8)
{ // Can essentially ignore the bit-depth.
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val += (1<<(KDU_FIX_POINT-8))>>1;
val >>= (KDU_FIX_POINT-8);
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:255;
}
*dest = (kdu_byte) val;
}
}
else
{ // Need to force zeros into one or more least significant bits.
kdu_int16 downshift = KDU_FIX_POINT-precision;
kdu_int16 upshift = 8-precision;
kdu_int16 offset = 1<<(downshift-1);
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val <<= upshift;
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:(256-(1<<upshift));
}
*dest = (kdu_byte) val;
}
}
}
else
{ // Transferring 16-bit absolute integers.
kdu_int16 val;
if (precision >= 8)
{
kdu_int16 downshift = precision-8;
kdu_int16 offset = (1<<downshift)>>1;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:255;
}
*dest = (kdu_byte) val;
}
}
else
{
kdu_int16 upshift = 8-precision;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val <<= upshift;
val += 128;
if (val & ((-1)<<8))
{
val = (val<0)?0:(256-(1<<upshift));
}
*dest = (kdu_byte) val;
}
}
}
}
}
LLKDUDecodeState::LLKDUDecodeState(kdu_tile tile, kdu_byte *buf, S32 row_gap)
{
S32 c;
mTile = tile;
mBuf = buf;
mRowGap = row_gap;
mNumComponents = tile.get_num_components();
llassert(mNumComponents<=4);
mUseYCC = tile.get_ycc();
for (c=0; c<4; ++c)
{
mReversible[c] = false;
mBitDepths[c] = 0;
}
// Open tile-components and create processing engines and resources
for (c=0; c < mNumComponents; c++)
{
mComps[c] = mTile.access_component(c);
mReversible[c] = mComps[c].get_reversible();
mBitDepths[c] = mComps[c].get_bit_depth();
kdu_resolution res = mComps[c].access_resolution(); // Get top resolution
kdu_dims comp_dims; res.get_dims(comp_dims);
if (c == 0)
{
mDims = comp_dims;
}
else
{
llassert(mDims == comp_dims); // Safety check; the caller has ensured this
}
bool use_shorts = (mComps[c].get_bit_depth(true) <= 16);
mLines[c].pre_create(&mAllocator,mDims.size.x,mReversible[c],use_shorts);
if (res.which() == 0) // No DWT levels used
{
mEngines[c] = kdu_decoder(res.access_subband(LL_BAND),&mAllocator,use_shorts);
}
else
{
mEngines[c] = kdu_synthesis(res,&mAllocator,use_shorts);
}
}
mAllocator.finalize(); // Actually creates buffering resources
for (c=0; c < mNumComponents; c++)
{
mLines[c].create(); // Grabs resources from the allocator.
}
}
LLKDUDecodeState::~LLKDUDecodeState()
{
S32 c;
// Cleanup
for (c=0; c < mNumComponents; c++)
{
mEngines[c].destroy(); // engines are interfaces; no default destructors
}
mTile.close();
}
BOOL LLKDUDecodeState::processTileDecode(F32 decode_time, BOOL limit_time)
/* Decompresses a tile, writing the data into the supplied byte buffer.
The buffer contains interleaved image components, if there are any.
Although you may think of the buffer as belonging entirely to this tile,
the `buf' pointer may actually point into a larger buffer representing
multiple tiles. For this reason, `row_gap' is needed to identify the
separation between consecutive rows in the real buffer. */
{
S32 c;
// Now walk through the lines of the buffer, recovering them from the
// relevant tile-component processing engines.
LLTimer decode_timer;
while (mDims.size.y--)
{
for (c=0; c < mNumComponents; c++)
{
mEngines[c].pull(mLines[c],true);
}
if ((mNumComponents >= 3) && mUseYCC)
{
kdu_convert_ycc_to_rgb(mLines[0],mLines[1],mLines[2]);
}
for (c=0; c < mNumComponents; c++)
{
transfer_bytes(mBuf+c,mLines[c],mNumComponents,mBitDepths[c]);
}
mBuf += mRowGap;
if (mDims.size.y % 10)
{
if (limit_time && decode_timer.getElapsedTimeF32() > decode_time)
{
return FALSE;
}
}
}
return TRUE;
}
|