summaryrefslogtreecommitdiff
path: root/indra/llcommon/tests/llunits_test.cpp
blob: 57cf9810af1dbcdc4e8fe4059b3cd94534aa5cde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/** 
 * @file llsingleton_test.cpp
 * @date 2011-08-11
 * @brief Unit test for the LLSingleton class
 *
 * $LicenseInfo:firstyear=2011&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2011, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "llunits.h"
#include "../test/lltut.h"

namespace LLUnits
{
	// using powers of 2 to allow strict floating point equality
	LL_DECLARE_BASE_UNIT(Quatloos, "Quat");
	LL_DECLARE_DERIVED_UNIT(Latinum, "Lat", Quatloos, / 4);
	LL_DECLARE_DERIVED_UNIT(Solari, "Sol", Latinum, * 16);
}

LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Quatloos);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Latinum);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Solari);

namespace LLUnits
{
	LL_DECLARE_BASE_UNIT(Celcius, "c");
	LL_DECLARE_DERIVED_UNIT(Fahrenheit, "f", Celcius, * 9 / 5 + 32);
	LL_DECLARE_DERIVED_UNIT(Kelvin, "k", Celcius, + 273.15f);
}

LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Celcius);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Fahrenheit);
LL_DECLARE_UNIT_TYPEDEFS(LLUnits, Kelvin);


namespace tut
{
	using namespace LLUnits;
	struct units
	{
	};

	typedef test_group<units> units_t;
	typedef units_t::object units_object_t;
	tut::units_t tut_singleton("LLUnit");

	// storage type conversions
	template<> template<>
	void units_object_t::test<1>()
	{
		LLUnit<F32, Quatloos> float_quatloos;
		ensure("default float unit is zero", float_quatloos == F32Quatloos(0.f));

		LLUnit<F32, Quatloos> float_initialize_quatloos(1);
		ensure("non-zero initialized unit", float_initialize_quatloos == F32Quatloos(1.f));

		LLUnit<S32, Quatloos> int_quatloos;
		ensure("default int unit is zero", int_quatloos == S32Quatloos(0));

		int_quatloos = S32Quatloos(42);
		ensure("int assignment is preserved", int_quatloos == S32Quatloos(42));
		float_quatloos = int_quatloos;
		ensure("float assignment from int preserves value", float_quatloos == F32Quatloos(42.f));

		int_quatloos = float_quatloos;
		ensure("int assignment from float preserves value", int_quatloos == S32Quatloos(42));

		float_quatloos = F32Quatloos(42.1f);
		int_quatloos = float_quatloos;
		ensure("int units truncate float units on assignment", int_quatloos == S32Quatloos(42));

		LLUnit<U32, Quatloos> unsigned_int_quatloos(float_quatloos);
		ensure("unsigned int can be initialized from signed int", unsigned_int_quatloos == S32Quatloos(42));

		S32Solari int_solari(1);

		float_quatloos = int_solari;
		ensure("fractional units are preserved in conversion from integer to float type", float_quatloos == F32Quatloos(0.25f));

		int_quatloos = S32Quatloos(1);
		F32Solari float_solari = int_quatloos;
		ensure("can convert with fractional intermediates from integer to float type", float_solari == F32Solari(4.f));
	}

	// conversions to/from base unit
	template<> template<>
	void units_object_t::test<2>()
	{
		LLUnit<F32, Quatloos> quatloos(1.f);
		LLUnit<F32, Latinum> latinum_bars(quatloos);
		ensure("conversion between units is automatic via initialization", latinum_bars == F32Latinum(1.f / 4.f));

		latinum_bars = S32Latinum(256);
		quatloos = latinum_bars;
		ensure("conversion between units is automatic via assignment, and bidirectional", quatloos == S32Quatloos(1024));

		LLUnit<S32, Quatloos> single_quatloo(1);
		LLUnit<F32, Latinum> quarter_latinum = single_quatloo;
		ensure("division of integer unit preserves fractional values when converted to float unit", quarter_latinum == F32Latinum(0.25f));
	}

	// conversions across non-base units
	template<> template<>
	void units_object_t::test<3>()
	{
		LLUnit<F32, Quatloos> quatloos(1024);
		LLUnit<F32, Solari> solari(quatloos);
		ensure("conversions can work between indirectly related units: Quatloos -> Latinum -> Solari", solari == S32Solari(4096));

		LLUnit<F32, Latinum> latinum_bars = solari;
		ensure("Non base units can be converted between each other", latinum_bars == S32Latinum(256));
	}

	// math operations
	template<> template<>
	void units_object_t::test<4>()
	{
		// exercise math operations
		LLUnit<F32, Quatloos> quatloos(1.f);
		quatloos *= 4.f;
		ensure(quatloos == S32Quatloos(4));
		quatloos = quatloos * 2;
		ensure(quatloos == S32Quatloos(8));
		quatloos = 2.f * quatloos;
		ensure(quatloos == S32Quatloos(16));

		quatloos += F32Quatloos(4.f);
		ensure(quatloos == S32Quatloos(20));
		quatloos += S32Quatloos(4);
		ensure(quatloos == S32Quatloos(24));
		quatloos = quatloos + S32Quatloos(4);
		ensure(quatloos == S32Quatloos(28));
		quatloos = S32Quatloos(4) + quatloos;
		ensure(quatloos == S32Quatloos(32));
		quatloos += quatloos * 3;
		ensure(quatloos == S32Quatloos(128));

		quatloos -= quatloos / 4 * 3;
		ensure(quatloos == S32Quatloos(32));
		quatloos = quatloos - S32Quatloos(8);
		ensure(quatloos == S32Quatloos(24));
		quatloos -= S32Quatloos(4);
		ensure(quatloos == S32Quatloos(20));
		quatloos -= F32Quatloos(4.f);
		ensure(quatloos == S32Quatloos(16));

		quatloos /= 2.f;
		ensure(quatloos == S32Quatloos(8));
		quatloos = quatloos / 4;
		ensure(quatloos == S32Quatloos(2));

		F32 ratio = quatloos / LLUnit<F32, Quatloos>(2.f);
		ensure(ratio == 1);
		ratio = quatloos / LLUnit<F32, Solari>(8.f);
		ensure(ratio == 1);

		quatloos += LLUnit<F32, Solari>(8.f);
		ensure(quatloos == S32Quatloos(4));
		quatloos -= LLUnit<F32, Latinum>(1.f);
		ensure(quatloos == S32Quatloos(0));
	}

	// comparison operators
	template<> template<>
	void units_object_t::test<5>()
	{
		LLUnit<S32, Quatloos> quatloos(1);
		ensure("can perform less than comparison against same type", quatloos < S32Quatloos(2));
		ensure("can perform less than comparison against different storage type", quatloos < F32Quatloos(2.f));
		ensure("can perform less than comparison against different units", quatloos < S32Latinum(5));
		ensure("can perform less than comparison against different storage type and units", quatloos < F32Latinum(5.f));

		ensure("can perform greater than comparison against same type", quatloos > S32Quatloos(0));
		ensure("can perform greater than comparison against different storage type", quatloos > F32Quatloos(0.f));
		ensure("can perform greater than comparison against different units", quatloos > S32Latinum(0));
		ensure("can perform greater than comparison against different storage type and units", quatloos > F32Latinum(0.f));

	}

	bool accept_explicit_quatloos(S32Quatloos q)
	{
		return true;
	}

	bool accept_implicit_quatloos(S32Quatloos q)
	{
		return true;
	}

	// signature compatibility
	template<> template<>
	void units_object_t::test<6>()
	{
		S32Quatloos quatloos(1);
		ensure("can pass unit values as argument", accept_explicit_quatloos(S32Quatloos(1)));
		ensure("can pass unit values as argument", accept_explicit_quatloos(quatloos));
	}

	// implicit units
	template<> template<>
	void units_object_t::test<7>()
	{
		LLUnit<F32, Quatloos> quatloos;
		LLUnitImplicit<F32, Quatloos> quatloos_implicit = quatloos + S32Quatloos(1);
		ensure("can initialize implicit unit from explicit", quatloos_implicit == 1);

		quatloos = quatloos_implicit;
		ensure("can assign implicit unit to explicit unit", quatloos == S32Quatloos(1));
		quatloos += quatloos_implicit;
		ensure("can perform math operation using mixture of implicit and explicit units", quatloos == S32Quatloos(2));

		// math operations on implicits
		quatloos_implicit = 1;
		ensure(quatloos_implicit == 1);

		quatloos_implicit += 2;
		ensure(quatloos_implicit == 3);

		quatloos_implicit *= 2;
		ensure(quatloos_implicit == 6);

		quatloos_implicit -= 1;
		ensure(quatloos_implicit == 5);

		quatloos_implicit /= 5;
		ensure(quatloos_implicit == 1);

		quatloos_implicit = quatloos_implicit + 3 + quatloos_implicit;
		ensure(quatloos_implicit == 5);

		quatloos_implicit = 10 - quatloos_implicit - 1;
		ensure(quatloos_implicit == 4);

		quatloos_implicit = 2 * quatloos_implicit * 2;
		ensure(quatloos_implicit == 16);

		F32 one_half = quatloos_implicit / (quatloos_implicit * 2);
		ensure(one_half == 0.5f);

		// implicit conversion to POD
		F32 float_val = quatloos_implicit;
		ensure("implicit units convert implicitly to regular values", float_val == 16);

		S32 int_val = quatloos_implicit;
		ensure("implicit units convert implicitly to regular values", int_val == 16);

		// conversion of implicits
		LLUnitImplicit<F32, Latinum> latinum_implicit(2);
		ensure("implicit units of different types are comparable", latinum_implicit * 2 == quatloos_implicit);

		quatloos_implicit += F32Quatloos(10);
		ensure("can add-assign explicit units", quatloos_implicit == 26);

		quatloos_implicit -= F32Quatloos(10);
		ensure("can subtract-assign explicit units", quatloos_implicit == 16);

		// comparisons
		ensure("can compare greater than implicit unit", quatloos_implicit > F32QuatloosImplicit(0.f));
		ensure("can compare greater than non-implicit unit", quatloos_implicit > F32Quatloos(0.f));
		ensure("can compare greater than or equal to implicit unit", quatloos_implicit >= F32QuatloosImplicit(0.f));
		ensure("can compare greater than or equal to non-implicit unit", quatloos_implicit >= F32Quatloos(0.f));
		ensure("can compare less than implicit unit", quatloos_implicit < F32QuatloosImplicit(20.f));
		ensure("can compare less than non-implicit unit", quatloos_implicit < F32Quatloos(20.f));
		ensure("can compare less than or equal to implicit unit", quatloos_implicit <= F32QuatloosImplicit(20.f));
		ensure("can compare less than or equal to non-implicit unit", quatloos_implicit <= F32Quatloos(20.f));
	}

	// precision tests
	template<> template<>
	void units_object_t::test<8>()
	{
		U32Bytes max_bytes(U32_MAX);
		S32Megabytes mega_bytes = max_bytes;
		ensure("max available precision is used when converting units", mega_bytes == (S32Megabytes)4095);

		mega_bytes = (S32Megabytes)-5 + (U32Megabytes)1;
		ensure("can mix signed and unsigned in units addition", mega_bytes == (S32Megabytes)-4);

		mega_bytes = (U32Megabytes)5 + (S32Megabytes)-1;
		ensure("can mix unsigned and signed in units addition", mega_bytes == (S32Megabytes)4);
	}

	// default units
	template<> template<>
	void units_object_t::test<9>()
	{
		U32Gigabytes GB(1);
		U32Megabytes MB(GB);
		U32Kilobytes KB(GB);
		U32Bytes B(GB);

		ensure("GB -> MB conversion", MB.value() == 1024);
		ensure("GB -> KB conversion", KB.value() == 1024 * 1024);
		ensure("GB -> B conversion", B.value() == 1024 * 1024 * 1024);

		KB = U32Kilobytes(1);
		U32Kilobits Kb(KB);
		U32Bits b(KB);
		ensure("KB -> Kb conversion", Kb.value() == 8);
		ensure("KB -> b conversion", b.value() == 8 * 1024);

		U32Days days(1);
		U32Hours hours(days);
		U32Minutes minutes(days);
		U32Seconds seconds(days);
		U32Milliseconds ms(days);
		
		ensure("days -> hours conversion", hours.value() == 24);
		ensure("days -> minutes conversion", minutes.value() == 24 * 60);
		ensure("days -> seconds conversion", seconds.value() == 24 * 60 * 60);
		ensure("days -> ms conversion", ms.value() == 24 * 60 * 60 * 1000);

		U32Kilometers km(1);
		U32Meters m(km);
		U32Centimeters cm(km);
		U32Millimeters mm(km);

		ensure("km -> m conversion", m.value() == 1000);
		ensure("km -> cm conversion", cm.value() == 1000 * 100);
		ensure("km -> mm conversion", mm.value() == 1000 * 1000);
		
		U32Gigahertz GHz(1);
		U32Megahertz MHz(GHz);
		U32Kilohertz KHz(GHz);
		U32Hertz	 Hz(GHz);

		ensure("GHz -> MHz conversion", MHz.value() == 1000);
		ensure("GHz -> KHz conversion", KHz.value() == 1000 * 1000);
		ensure("GHz -> Hz conversion", Hz.value() == 1000 * 1000 * 1000);

		F32Radians rad(6.2831853071795f);
		S32Degrees deg(rad);
		ensure("radians -> degrees conversion", deg.value() == 360);

		F32Percent percent(50);
		F32Ratio ratio(percent);
		ensure("percent -> ratio conversion", ratio.value() == 0.5f);

		U32Kilotriangles ktris(1);
		U32Triangles tris(ktris);
		ensure("kilotriangles -> triangles conversion", tris.value() == 1000);
	}

	bool value_near(F32 value, F32 target, F32 threshold)
	{
		return fabsf(value - target) < threshold;
	}

	// linear transforms
	template<> template<>
	void units_object_t::test<10>()
	{
		F32Celcius float_celcius(100);
		F32Fahrenheit float_fahrenheit(float_celcius);
		ensure("floating point celcius -> fahrenheit conversion using linear transform", value_near(float_fahrenheit.value(), 212, 0.1f) );

		float_celcius = float_fahrenheit;
		ensure("floating point fahrenheit -> celcius conversion using linear transform (round trip)", value_near(float_celcius.value(), 100.f, 0.1f) );

		S32Celcius int_celcius(100);
		S32Fahrenheit int_fahrenheit(int_celcius);
		ensure("integer celcius -> fahrenheit conversion using linear transform", int_fahrenheit.value() == 212);

		int_celcius = int_fahrenheit;
		ensure("integer fahrenheit -> celcius conversion using linear transform (round trip)", int_celcius.value() == 100);
	}
}