summaryrefslogtreecommitdiff
path: root/indra/llcommon/llstl.h
blob: a90c2c7e087a0593f1194662eff34b15c841aaef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/** 
 * @file llstl.h
 * @brief helper object & functions for use with the stl.
 *
 * $LicenseInfo:firstyear=2003&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#ifndef LL_LLSTL_H
#define LL_LLSTL_H

#include "stdtypes.h"
#include <functional>
#include <algorithm>
#include <map>
#include <vector>
#include <list>
#include <set>
#include <typeinfo>

#ifdef LL_LINUX
// <ND> For strcmp
#include <string.h>
#endif
// Use to compare the first element only of a pair
// e.g. typedef std::set<std::pair<int, Data*>, compare_pair<int, Data*> > some_pair_set_t; 
template <typename T1, typename T2>
struct compare_pair_first
{
	bool operator()(const std::pair<T1, T2>& a, const std::pair<T1, T2>& b) const
	{
		return a.first < b.first;
	}
};

template <typename T1, typename T2>
struct compare_pair_greater
{
	bool operator()(const std::pair<T1, T2>& a, const std::pair<T1, T2>& b) const
	{
		if (!(a.first < b.first))
			return true;
		else if (!(b.first < a.first))
			return false;
		else
			return !(a.second < b.second);
	}
};

// Use to compare the contents of two pointers (e.g. std::string*)
template <typename T>
struct compare_pointer_contents
{
	typedef const T* Tptr;
	bool operator()(const Tptr& a, const Tptr& b) const
	{
		return *a < *b;
	}
};

// DeletePointer is a simple helper for deleting all pointers in a container.
// The general form is:
//
//  std::for_each(cont.begin(), cont.end(), DeletePointer());
//  somemap.clear();
//
// Don't forget to clear()!

struct DeletePointer
{
	template<typename T> void operator()(T* ptr) const
	{
		delete ptr;
	}
};
struct DeletePointerArray
{
	template<typename T> void operator()(T* ptr) const
	{
		delete[] ptr;
	}
};

// DeletePairedPointer is a simple helper for deleting all pointers in a map.
// The general form is:
//
//  std::for_each(somemap.begin(), somemap.end(), DeletePairedPointer());
//  somemap.clear();		// Don't leave dangling pointers around

struct DeletePairedPointer
{
	template<typename T> void operator()(T &ptr) const
	{
		delete ptr.second;
		ptr.second = NULL;
	}
};
struct DeletePairedPointerArray
{
	template<typename T> void operator()(T &ptr) const
	{
		delete[] ptr.second;
		ptr.second = NULL;
	}
};


// Alternate version of the above so that has a more cumbersome
// syntax, but it can be used with compositional functors.
// NOTE: The functor retuns a bool because msdev bombs during the
// composition if you return void. Once we upgrade to a newer
// compiler, the second unary_function template parameter can be set
// to void.
//
// Here's a snippet showing how you use this object:
//
// typedef std::map<int, widget*> map_type;
// map_type widget_map;
// ... // add elements
// // delete them all
// for_each(widget_map.begin(),
//          widget_map.end(),
//          llcompose1(DeletePointerFunctor<widget>(),
//                     llselect2nd<map_type::value_type>()));

template<typename T>
struct DeletePointerFunctor : public std::unary_function<T*, bool>
{
	bool operator()(T* ptr) const
	{
		delete ptr;
		return true;
	}
};

// See notes about DeleteArray for why you should consider avoiding this.
template<typename T>
struct DeleteArrayFunctor : public std::unary_function<T*, bool>
{
	bool operator()(T* ptr) const
	{
		delete[] ptr;
		return true;
	}
};

// CopyNewPointer is a simple helper which accepts a pointer, and
// returns a new pointer built with the copy constructor. Example:
//
//  transform(in.begin(), in.end(), out.end(), CopyNewPointer());

struct CopyNewPointer
{
	template<typename T> T* operator()(const T* ptr) const
	{
		return new T(*ptr);
	}
};

template<typename T, typename ALLOC>
void delete_and_clear(std::list<T*, ALLOC>& list)
{
	std::for_each(list.begin(), list.end(), DeletePointer());
	list.clear();
}

template<typename T, typename ALLOC>
void delete_and_clear(std::vector<T*, ALLOC>& vector)
{
	std::for_each(vector.begin(), vector.end(), DeletePointer());
	vector.clear();
}

template<typename T, typename COMPARE, typename ALLOC>
void delete_and_clear(std::set<T*, COMPARE, ALLOC>& set)
{
	std::for_each(set.begin(), set.end(), DeletePointer());
	set.clear();
}

template<typename K, typename V, typename COMPARE, typename ALLOC>
void delete_and_clear(std::map<K, V*, COMPARE, ALLOC>& map)
{
	std::for_each(map.begin(), map.end(), DeletePairedPointer());
	map.clear();
}

template<typename T>
void delete_and_clear(T*& ptr)
{
	delete ptr;
	ptr = NULL;
}


template<typename T>
void delete_and_clear_array(T*& ptr)
{
	delete[] ptr;
	ptr = NULL;
}

// Simple function to help with finding pointers in maps.
// For example:
// 	typedef  map_t;
//  std::map<int, const char*> foo;
//	foo[18] = "there";
//	foo[2] = "hello";
// 	const char* bar = get_ptr_in_map(foo, 2); // bar -> "hello"
//  const char* baz = get_ptr_in_map(foo, 3); // baz == NULL
template <typename K, typename T>
inline T* get_ptr_in_map(const std::map<K,T*>& inmap, const K& key)
{
	// Typedef here avoids warnings because of new c++ naming rules.
	typedef typename std::map<K,T*>::const_iterator map_iter;
	map_iter iter = inmap.find(key);
	if(iter == inmap.end())
	{
		return NULL;
	}
	else
	{
		return iter->second;
	}
};

// helper function which returns true if key is in inmap.
template <typename K, typename T>
inline bool is_in_map(const std::map<K,T>& inmap, const K& key)
{
	if(inmap.find(key) == inmap.end())
	{
		return false;
	}
	else
	{
		return true;
	}
}

// Similar to get_ptr_in_map, but for any type with a valid T(0) constructor.
// To replace LLSkipMap getIfThere, use:
//   get_if_there(map, key, 0)
// WARNING: Make sure default_value (generally 0) is not a valid map entry!
template <typename K, typename T>
inline T get_if_there(const std::map<K,T>& inmap, const K& key, T default_value)
{
	// Typedef here avoids warnings because of new c++ naming rules.
	typedef typename std::map<K,T>::const_iterator map_iter;
	map_iter iter = inmap.find(key);
	if(iter == inmap.end())
	{
		return default_value;
	}
	else
	{
		return iter->second;
	}
};

// Useful for replacing the removeObj() functionality of LLDynamicArray
// Example:
//  for (std::vector<T>::iterator iter = mList.begin(); iter != mList.end(); )
//  {
//    if ((*iter)->isMarkedForRemoval())
//      iter = vector_replace_with_last(mList, iter);
//    else
//      ++iter;
//  }
template <typename T>
inline typename std::vector<T>::iterator vector_replace_with_last(std::vector<T>& invec, typename std::vector<T>::iterator iter)
{
	typename std::vector<T>::iterator last = invec.end(); --last;
	if (iter == invec.end())
	{
		return iter;
	}
	else if (iter == last)
	{
		invec.pop_back();
		return invec.end();
	}
	else
	{
		*iter = *last;
		invec.pop_back();
		return iter;
	}
};

// Example:
//   vector_replace_with_last(mList, x);
template <typename T>
inline bool vector_replace_with_last(std::vector<T>& invec, const T& val)
{
	typename std::vector<T>::iterator iter = std::find(invec.begin(), invec.end(), val);
	if (iter != invec.end())
	{
		typename std::vector<T>::iterator last = invec.end(); --last;
		*iter = *last;
		invec.pop_back();
		return true;
	}
	return false;
}

// Append N elements to the vector and return a pointer to the first new element.
template <typename T>
inline T* vector_append(std::vector<T>& invec, S32 N)
{
	U32 sz = invec.size();
	invec.resize(sz+N);
	return &(invec[sz]);
}

// call function f to n members starting at first. similar to std::for_each
template <class InputIter, class Size, class Function>
Function ll_for_n(InputIter first, Size n, Function f)
{
	for ( ; n > 0; --n, ++first)
		f(*first);
	return f;
}

// copy first to result n times, incrementing each as we go
template <class InputIter, class Size, class OutputIter>
OutputIter ll_copy_n(InputIter first, Size n, OutputIter result)
{
	for ( ; n > 0; --n, ++result, ++first)
		*result = *first;
	return result;
}

// set  *result = op(*f) for n elements of f
template <class InputIter, class OutputIter, class Size, class UnaryOp>
OutputIter ll_transform_n(
	InputIter first,
	Size n,
	OutputIter result,
	UnaryOp op)
{
	for ( ; n > 0; --n, ++result, ++first)
		*result = op(*first);
	return result;
}



/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */


// helper to deal with the fact that MSDev does not package
// select... with the stl. Look up usage on the sgi website.

template <class _Pair>
struct _LLSelect1st : public std::unary_function<_Pair, typename _Pair::first_type> {
  const typename _Pair::first_type& operator()(const _Pair& __x) const {
    return __x.first;
  }
};

template <class _Pair>
struct _LLSelect2nd : public std::unary_function<_Pair, typename _Pair::second_type>
{
  const typename _Pair::second_type& operator()(const _Pair& __x) const {
    return __x.second;
  }
};

template <class _Pair> struct llselect1st : public _LLSelect1st<_Pair> {};
template <class _Pair> struct llselect2nd : public _LLSelect2nd<_Pair> {};

// helper to deal with the fact that MSDev does not package
// compose... with the stl. Look up usage on the sgi website.

template <class _Operation1, class _Operation2>
class ll_unary_compose :
	public std::unary_function<typename _Operation2::argument_type,
							   typename _Operation1::result_type>
{
protected:
  _Operation1 __op1;
  _Operation2 __op2;
public:
  ll_unary_compose(const _Operation1& __x, const _Operation2& __y)
    : __op1(__x), __op2(__y) {}
  typename _Operation1::result_type
  operator()(const typename _Operation2::argument_type& __x) const {
    return __op1(__op2(__x));
  }
};

template <class _Operation1, class _Operation2>
inline ll_unary_compose<_Operation1,_Operation2>
llcompose1(const _Operation1& __op1, const _Operation2& __op2)
{
  return ll_unary_compose<_Operation1,_Operation2>(__op1, __op2);
}

template <class _Operation1, class _Operation2, class _Operation3>
class ll_binary_compose
  : public std::unary_function<typename _Operation2::argument_type,
							   typename _Operation1::result_type> {
protected:
  _Operation1 _M_op1;
  _Operation2 _M_op2;
  _Operation3 _M_op3;
public:
  ll_binary_compose(const _Operation1& __x, const _Operation2& __y,
					const _Operation3& __z)
    : _M_op1(__x), _M_op2(__y), _M_op3(__z) { }
  typename _Operation1::result_type
  operator()(const typename _Operation2::argument_type& __x) const {
    return _M_op1(_M_op2(__x), _M_op3(__x));
  }
};

template <class _Operation1, class _Operation2, class _Operation3>
inline ll_binary_compose<_Operation1, _Operation2, _Operation3>
llcompose2(const _Operation1& __op1, const _Operation2& __op2,
         const _Operation3& __op3)
{
  return ll_binary_compose<_Operation1,_Operation2,_Operation3>
    (__op1, __op2, __op3);
}

// helpers to deal with the fact that MSDev does not package
// bind... with the stl. Again, this is from sgi.
template <class _Operation>
class llbinder1st :
	public std::unary_function<typename _Operation::second_argument_type,
							   typename _Operation::result_type> {
protected:
  _Operation op;
  typename _Operation::first_argument_type value;
public:
  llbinder1st(const _Operation& __x,
			  const typename _Operation::first_argument_type& __y)
      : op(__x), value(__y) {}
	typename _Operation::result_type
	operator()(const typename _Operation::second_argument_type& __x) const {
		return op(value, __x);
	}
};

template <class _Operation, class _Tp>
inline llbinder1st<_Operation>
llbind1st(const _Operation& __oper, const _Tp& __x)
{
  typedef typename _Operation::first_argument_type _Arg1_type;
  return llbinder1st<_Operation>(__oper, _Arg1_type(__x));
}

template <class _Operation>
class llbinder2nd
	: public std::unary_function<typename _Operation::first_argument_type,
								 typename _Operation::result_type> {
protected:
	_Operation op;
	typename _Operation::second_argument_type value;
public:
	llbinder2nd(const _Operation& __x,
				const typename _Operation::second_argument_type& __y)
		: op(__x), value(__y) {}
	typename _Operation::result_type
	operator()(const typename _Operation::first_argument_type& __x) const {
		return op(__x, value);
	}
};

template <class _Operation, class _Tp>
inline llbinder2nd<_Operation>
llbind2nd(const _Operation& __oper, const _Tp& __x)
{
  typedef typename _Operation::second_argument_type _Arg2_type;
  return llbinder2nd<_Operation>(__oper, _Arg2_type(__x));
}

/**
 * Compare std::type_info* pointers a la std::less. We break this out as a
 * separate function for use in two different std::less specializations.
 */
inline
bool before(const std::type_info* lhs, const std::type_info* rhs)
{
#if LL_LINUX && defined(__GNUC__) && ((__GNUC__ < 4) || (__GNUC__ == 4 && __GNUC_MINOR__ < 4))
    // If we're building on Linux with gcc, and it's either gcc 3.x or
    // 4.{0,1,2,3}, then we have to use a workaround. Note that we use gcc on
    // Mac too, and some people build with gcc on Windows (cygwin or mingw).
    // On Linux, different load modules may produce different type_info*
    // pointers for the same type. Have to compare name strings to get good
    // results.
    return strcmp(lhs->name(), rhs->name()) < 0;
#else  // not Linux, or gcc 4.4+
    // Just use before(), as we normally would
    return lhs->before(*rhs) ? true : false;
#endif
}

/**
 * Specialize std::less<std::type_info*> to use std::type_info::before().
 * See MAINT-1175. It is NEVER a good idea to directly compare std::type_info*
 * because, on Linux, you might get different std::type_info* pointers for the
 * same type (from different load modules)!
 */
namespace std
{
	template <>
	struct less<const std::type_info*>:
		public std::binary_function<const std::type_info*, const std::type_info*, bool>
	{
		bool operator()(const std::type_info* lhs, const std::type_info* rhs) const
		{
			return before(lhs, rhs);
		}
	};

	template <>
	struct less<std::type_info*>:
		public std::binary_function<std::type_info*, std::type_info*, bool>
	{
		bool operator()(std::type_info* lhs, std::type_info* rhs) const
		{
			return before(lhs, rhs);
		}
	};
} // std


/**
 * Implementation for ll_template_cast() (q.v.).
 *
 * Default implementation: trying to cast two completely unrelated types
 * returns 0. Typically you'd specify T and U as pointer types, but in fact T
 * can be any type that can be initialized with 0.
 */
template <typename T, typename U>
struct ll_template_cast_impl
{
    T operator()(U)
    {
        return 0;
    }
};

/**
 * ll_template_cast<T>(some_value) is for use in a template function when
 * some_value might be of arbitrary type, but you want to recognize type T
 * specially.
 *
 * It's designed for use with pointer types. Example:
 * @code
 * struct SpecialClass
 * {
 *     void someMethod(const std::string&) const;
 * };
 *
 * template <class REALCLASS>
 * void somefunc(const REALCLASS& instance)
 * {
 *     const SpecialClass* ptr = ll_template_cast<const SpecialClass*>(&instance);
 *     if (ptr)
 *     {
 *         ptr->someMethod("Call method only available on SpecialClass");
 *     }
 * }
 * @endcode
 *
 * Why is this better than dynamic_cast<>? Because unless OtherClass is
 * polymorphic, the following won't even compile (gcc 4.0.1):
 * @code
 * OtherClass other;
 * SpecialClass* ptr = dynamic_cast<SpecialClass*>(&other);
 * @endcode
 * to say nothing of this:
 * @code
 * void function(int);
 * SpecialClass* ptr = dynamic_cast<SpecialClass*>(&function);
 * @endcode
 * ll_template_cast handles these kinds of cases by returning 0.
 */
template <typename T, typename U>
T ll_template_cast(U value)
{
    return ll_template_cast_impl<T, U>()(value);
}

/**
 * Implementation for ll_template_cast() (q.v.).
 *
 * Implementation for identical types: return same value.
 */
template <typename T>
struct ll_template_cast_impl<T, T>
{
    T operator()(T value)
    {
        return value;
    }
};

/**
 * LL_TEMPLATE_CONVERTIBLE(dest, source) asserts that, for a value @c s of
 * type @c source, <tt>ll_template_cast<dest>(s)</tt> will return @c s --
 * presuming that @c source can be converted to @c dest by the normal rules of
 * C++.
 *
 * By default, <tt>ll_template_cast<dest>(s)</tt> will return 0 unless @c s's
 * type is literally identical to @c dest. (This is because of the
 * straightforward application of template specialization rules.) That can
 * lead to surprising results, e.g.:
 *
 * @code
 * Foo myFoo;
 * const Foo* fooptr = ll_template_cast<const Foo*>(&myFoo);
 * @endcode
 *
 * Here @c fooptr will be 0 because <tt>&myFoo</tt> is of type <tt>Foo*</tt>
 * -- @em not <tt>const Foo*</tt>. (Declaring <tt>const Foo myFoo;</tt> would
 * force the compiler to do the right thing.)
 *
 * More disappointingly:
 * @code
 * struct Base {};
 * struct Subclass: public Base {};
 * Subclass object;
 * Base* ptr = ll_template_cast<Base*>(&object);
 * @endcode
 *
 * Here @c ptr will be 0 because <tt>&object</tt> is of type
 * <tt>Subclass*</tt> rather than <tt>Base*</tt>. We @em want this cast to
 * succeed, but without our help ll_template_cast can't recognize it.
 *
 * The following would suffice:
 * @code
 * LL_TEMPLATE_CONVERTIBLE(Base*, Subclass*);
 * ...
 * Base* ptr = ll_template_cast<Base*>(&object);
 * @endcode
 *
 * However, as noted earlier, this is easily fooled:
 * @code
 * const Base* ptr = ll_template_cast<const Base*>(&object);
 * @endcode
 * would still produce 0 because we haven't yet seen:
 * @code
 * LL_TEMPLATE_CONVERTIBLE(const Base*, Subclass*);
 * @endcode
 *
 * @TODO
 * This macro should use Boost type_traits facilities for stripping and
 * re-adding @c const and @c volatile qualifiers so that invoking
 * LL_TEMPLATE_CONVERTIBLE(dest, source) will automatically generate all
 * permitted permutations. It's really not fair to the coder to require
 * separate:
 * @code
 * LL_TEMPLATE_CONVERTIBLE(Base*, Subclass*);
 * LL_TEMPLATE_CONVERTIBLE(const Base*, Subclass*);
 * LL_TEMPLATE_CONVERTIBLE(const Base*, const Subclass*);
 * @endcode
 *
 * (Naturally we omit <tt>LL_TEMPLATE_CONVERTIBLE(Base*, const Subclass*)</tt>
 * because that's not permitted by normal C++ assignment anyway.)
 */
#define LL_TEMPLATE_CONVERTIBLE(DEST, SOURCE)   \
template <>                                     \
struct ll_template_cast_impl<DEST, SOURCE>      \
{                                               \
    DEST operator()(SOURCE wrapper)             \
    {                                           \
        return wrapper;                         \
    }                                           \
}


#endif // LL_LLSTL_H