1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
/**
* @file llsingleton.h
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LLSINGLETON_H
#define LLSINGLETON_H
#include <boost/noncopyable.hpp>
#include <boost/unordered_set.hpp>
#include <boost/intrusive_ptr.hpp>
#include <list>
#include <vector>
#include <typeinfo>
// TODO:
// Tests for all this!
class LLSingletonBase: private boost::noncopyable
{
public:
class MasterList;
class MasterRefcount;
typedef boost::intrusive_ptr<MasterRefcount> ref_ptr_t;
private:
// All existing LLSingleton instances are tracked in this master list.
typedef std::list<LLSingletonBase*> list_t;
static list_t& get_master();
// This, on the other hand, is a stack whose top indicates the LLSingleton
// currently being initialized.
static list_t& get_initializing();
// Produce a vector<LLSingletonBase*> of master list, in dependency order.
typedef std::vector<LLSingletonBase*> vec_t;
static vec_t dep_sort();
bool mCleaned; // cleanupSingleton() has been called
// we directly depend on these other LLSingletons
typedef boost::unordered_set<LLSingletonBase*> set_t;
set_t mDepends;
protected:
// Base-class constructor should only be invoked by the DERIVED_TYPE
// constructor.
LLSingletonBase();
virtual ~LLSingletonBase();
// Every new LLSingleton should be added to/removed from the master list
void add_master();
void remove_master();
// with a little help from our friends.
template <class T> friend class LLSingleton_manage_master;
// Maintain a stack of the LLSingleton subclass instance currently being
// initialized. We use this to notice direct dependencies: we want to know
// if A requires B. We deduce that if while initializing A, control
// reaches B::getInstance().
// We want &A to be at the top of that stack during both A::A() and
// A::initSingleton(), since a call to B::getInstance() might occur during
// either.
// Unfortunately the desired timespan does not correspond neatly with a
// single C++ scope, else we'd use RAII to track it. But we do know that
// LLSingletonBase's constructor definitely runs just before
// LLSingleton's, which runs just before the specific subclass's.
void push_initializing();
// LLSingleton is, and must remain, the only caller to initSingleton().
// That being the case, we control exactly when it happens -- and we can
// pop the stack immediately thereafter.
void pop_initializing();
// If a given call to B::getInstance() happens during either A::A() or
// A::initSingleton(), record that A directly depends on B.
void capture_dependency();
// delegate LL_ERRS() logging to llsingleton.cpp
static void logerrs(const char* p1, const char* p2="", const char* p3="");
// delegate LL_WARNS() logging to llsingleton.cpp
static void logwarns(const char* p1, const char* p2="", const char* p3="");
// obtain canonical ref_ptr_t
static ref_ptr_t get_master_refcount();
// Default methods in case subclass doesn't declare them.
virtual void initSingleton() {}
virtual void cleanupSingleton() {}
// deleteSingleton() isn't -- and shouldn't be -- a virtual method. It's a
// class static. However, given only Foo*, deleteAll() does need to be
// able to reach Foo::deleteSingleton(). Make LLSingleton (which declares
// deleteSingleton()) store a pointer here. Since we know it's a static
// class method, a classic-C function pointer will do.
void (*mDeleteSingleton)();
public:
/**
* Call this to call the cleanupSingleton() method for every LLSingleton
* constructed since the start of the last cleanupAll() call. (Any
* LLSingleton constructed DURING a cleanupAll() call won't be cleaned up
* until the next cleanupAll() call.) cleanupSingleton() neither deletes
* nor destroys its LLSingleton; therefore it's safe to include logic that
* might take significant realtime or even throw an exception.
*
* The most important property of cleanupAll() is that cleanupSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a cleanupSingleton() method throws an exception, the exception is
* logged, but cleanupAll() attempts to continue calling the rest of the
* cleanupSingleton() methods.
*/
static void cleanupAll();
/**
* Call this to call the deleteSingleton() method for every LLSingleton
* constructed since the start of the last deleteAll() call. (Any
* LLSingleton constructed DURING a deleteAll() call won't be cleaned up
* until the next deleteAll() call.) deleteSingleton() deletes and
* destroys its LLSingleton. Any cleanup logic that might take significant
* realtime -- or throw an exception -- must not be placed in your
* LLSingleton's destructor, but rather in its cleanupSingleton() method.
*
* The most important property of deleteAll() is that deleteSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a deleteSingleton() method throws an exception, the exception is
* logged, but deleteAll() attempts to continue calling the rest of the
* deleteSingleton() methods.
*/
static void deleteAll();
};
// support ref_ptr_t
void intrusive_ptr_add_ref(LLSingletonBase::MasterRefcount*);
void intrusive_ptr_release(LLSingletonBase::MasterRefcount*);
// Most of the time, we want LLSingleton_manage_master() to forward its
// methods to LLSingletonBase::add_master() and remove_master().
template <class T>
struct LLSingleton_manage_master
{
void add(LLSingletonBase* sb) { sb->add_master(); }
void remove(LLSingletonBase* sb) { sb->remove_master(); }
};
// But for the specific case of LLSingletonBase::MasterList, don't.
template <>
struct LLSingleton_manage_master<LLSingletonBase::MasterList>
{
void add(LLSingletonBase*) {}
void remove(LLSingletonBase*) {}
};
/**
* LLSingleton implements the getInstance() method part of the Singleton
* pattern. It can't make the derived class constructors protected, though, so
* you have to do that yourself.
*
* Derive your class from LLSingleton, passing your subclass name as
* LLSingleton's template parameter, like so:
*
* class Foo: public LLSingleton<Foo>{};
*
* Foo& instance = Foo::instance();
*
* LLSingleton recognizes a couple special methods in your derived class.
*
* If you override LLSingleton<T>::initSingleton(), your method will be called
* immediately after the instance is constructed. This is useful for breaking
* circular dependencies: if you find that your LLSingleton subclass
* constructor references other LLSingleton subclass instances in a chain
* leading back to yours, move the instance reference from your constructor to
* your initSingleton() method.
*
* If you override LLSingleton<T>::cleanupSingleton(), your method will be
* called if someone calls LLSingletonBase::cleanupAll(). The significant part
* of this promise is that cleanupAll() will call individual
* cleanupSingleton() methods in reverse dependency order.
*
* That is, consider LLSingleton subclasses C, B and A. A depends on B, which
* in turn depends on C. These dependencies are expressed as calls to
* B::instance() or B::getInstance(), and C::instance() or C::getInstance().
* It shouldn't matter whether these calls appear in A::A() or
* A::initSingleton(), likewise B::B() or B::initSingleton().
*
* We promise that if you later call LLSingletonBase::cleanupAll():
* 1. A::cleanupSingleton() will be called before
* 2. B::cleanupSingleton(), which will be called before
* 3. C::cleanupSingleton().
* Put differently, if your LLSingleton subclass constructor or
* initSingleton() method explicitly depends on some other LLSingleton
* subclass, you may continue to rely on that other subclass in your
* cleanupSingleton() method.
*
* We introduce a special cleanupSingleton() method because cleanupSingleton()
* operations can involve nontrivial realtime, or might throw an exception. A
* destructor should do neither!
*
* If your cleanupSingleton() method throws an exception, we log that
* exception but proceed with the remaining cleanupSingleton() calls.
*
* Similarly, if at some point you call LLSingletonBase::deleteAll(), all
* remaining LLSingleton instances will be destroyed in dependency order. (Or
* call MySubclass::deleteSingleton() to specifically destroy the canonical
* MySubclass instance.)
*
* As currently written, LLSingleton is not thread-safe.
*/
template <typename DERIVED_TYPE>
class LLSingleton : public LLSingletonBase
{
private:
typedef enum e_init_state
{
UNINITIALIZED = 0, // must be default-initialized state
CONSTRUCTING,
INITIALIZING,
INITIALIZED,
DELETED
} EInitState;
static DERIVED_TYPE* constructSingleton()
{
return new DERIVED_TYPE();
}
// stores pointer to singleton instance
struct SingletonLifetimeManager
{
SingletonLifetimeManager():
mMasterRefcount(LLSingletonBase::get_master_refcount())
{
construct();
}
static void construct()
{
sData.mInitState = CONSTRUCTING;
sData.mInstance = constructSingleton();
sData.mInitState = INITIALIZING;
}
~SingletonLifetimeManager()
{
// The dependencies between LLSingletons, and the arbitrary order
// of static-object destruction, mean that we DO NOT WANT this
// destructor to delete this LLSingleton. This destructor will run
// without regard to any other LLSingleton whose cleanup might
// depend on its existence. What we really want is to count the
// runtime's attempts to cleanup LLSingleton static data -- and on
// the very last one, call LLSingletonBase::deleteAll(). That
// method will properly honor cross-LLSingleton dependencies. This
// is why we store an intrusive_ptr to a MasterRefcount: our
// ref_ptr_t member counts SingletonLifetimeManager instances.
// Once the runtime destroys the last of these, THEN we can delete
// every remaining LLSingleton.
}
LLSingletonBase::ref_ptr_t mMasterRefcount;
};
protected:
LLSingleton()
{
// populate base-class function pointer with the static
// deleteSingleton() function for this particular specialization
mDeleteSingleton = &deleteSingleton;
// add this new instance to the master list
LLSingleton_manage_master<DERIVED_TYPE>().add(this);
}
public:
virtual ~LLSingleton()
{
// remove this instance from the master list
LLSingleton_manage_master<DERIVED_TYPE>().remove(this);
sData.mInstance = NULL;
sData.mInitState = DELETED;
}
/**
* @brief Immediately delete the singleton.
*
* A subsequent call to LLProxy::getInstance() will construct a new
* instance of the class.
*
* Without an explicit call to LLSingletonBase::deleteAll(), LLSingletons
* are implicitly destroyed after main() has exited and the C++ runtime is
* cleaning up statically-constructed objects. Some classes derived from
* LLSingleton have objects that are part of a runtime system that is
* terminated before main() exits. Calling the destructor of those objects
* after the termination of their respective systems can cause crashes and
* other problems during termination of the project. Using this method to
* destroy the singleton early can prevent these crashes.
*
* An example where this is needed is for a LLSingleton that has an APR
* object as a member that makes APR calls on destruction. The APR system is
* shut down explicitly before main() exits. This causes a crash on exit.
* Using this method before the call to apr_terminate() and NOT calling
* getInstance() again will prevent the crash.
*/
static void deleteSingleton()
{
delete sData.mInstance;
sData.mInstance = NULL;
sData.mInitState = DELETED;
}
static DERIVED_TYPE* getInstance()
{
static SingletonLifetimeManager sLifeTimeMgr;
switch (sData.mInitState)
{
case UNINITIALIZED:
// should never be uninitialized at this point
logerrs("Uninitialized singleton ", typeid(DERIVED_TYPE).name());
return NULL;
case CONSTRUCTING:
logerrs("Tried to access singleton ", typeid(DERIVED_TYPE).name(),
" from singleton constructor!");
return NULL;
case INITIALIZING:
// go ahead and flag ourselves as initialized so we can be
// reentrant during initialization
sData.mInitState = INITIALIZED;
// initialize singleton after constructing it so that it can
// reference other singletons which in turn depend on it, thus
// breaking cyclic dependencies
sData.mInstance->initSingleton();
// pop this off stack of initializing singletons
sData.mInstance->pop_initializing();
break;
case INITIALIZED:
break;
case DELETED:
logwarns("Trying to access deleted singleton ", typeid(DERIVED_TYPE).name(),
" -- creating new instance");
SingletonLifetimeManager::construct();
// same as first time construction
sData.mInitState = INITIALIZED;
sData.mInstance->initSingleton();
// pop this off stack of initializing singletons
sData.mInstance->pop_initializing();
break;
}
// By this point, if DERIVED_TYPE was pushed onto the initializing
// stack, it has been popped off. So the top of that stack, if any, is
// an LLSingleton that directly depends on DERIVED_TYPE. If this call
// came from another LLSingleton, rather than from vanilla application
// code, record the dependency.
sData.mInstance->capture_dependency();
return sData.mInstance;
}
// Reference version of getInstance()
// Preferred over getInstance() as it disallows checking for NULL
static DERIVED_TYPE& instance()
{
return *getInstance();
}
// Has this singleton been created yet?
// Use this to avoid accessing singletons before they can safely be constructed.
static bool instanceExists()
{
return sData.mInitState == INITIALIZED;
}
private:
struct SingletonData
{
// explicitly has a default constructor so that member variables are zero initialized in BSS
// and only changed by singleton logic, not constructor running during startup
EInitState mInitState;
DERIVED_TYPE* mInstance;
};
static SingletonData sData;
};
template<typename T>
typename LLSingleton<T>::SingletonData LLSingleton<T>::sData;
#endif
|