1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
|
/**
* @file llsingleton.h
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LLSINGLETON_H
#define LLSINGLETON_H
#include <boost/noncopyable.hpp>
#include <boost/unordered_set.hpp>
#include <initializer_list>
#include <list>
#include <typeinfo>
#include <vector>
#include "mutex.h"
#include "lockstatic.h"
#include "llthread.h" // on_main_thread()
#include "llmainthreadtask.h"
class LLSingletonBase: private boost::noncopyable
{
public:
class MasterList;
private:
// All existing LLSingleton instances are tracked in this master list.
typedef std::list<LLSingletonBase*> list_t;
// Size of stack whose top indicates the LLSingleton currently being
// initialized.
static list_t::size_type get_initializing_size();
// Produce a vector<LLSingletonBase*> of master list, in dependency order.
typedef std::vector<LLSingletonBase*> vec_t;
static vec_t dep_sort();
// we directly depend on these other LLSingletons
typedef boost::unordered_set<LLSingletonBase*> set_t;
set_t mDepends;
protected:
typedef enum e_init_state
{
UNINITIALIZED = 0, // must be default-initialized state
QUEUED, // construction queued, not yet executing
CONSTRUCTING, // within DERIVED_TYPE constructor
INITIALIZING, // within DERIVED_TYPE::initSingleton()
INITIALIZED, // normal case
DELETED // deleteSingleton() or deleteAll() called
} EInitState;
// Define tag<T> to pass to our template constructor. You can't explicitly
// invoke a template constructor with ordinary template syntax:
// http://stackoverflow.com/a/3960925/5533635
template <typename T>
struct tag
{
typedef T type;
};
// Base-class constructor should only be invoked by the DERIVED_TYPE
// constructor, which passes tag<DERIVED_TYPE> for various purposes.
template <typename DERIVED_TYPE>
LLSingletonBase(tag<DERIVED_TYPE>);
virtual ~LLSingletonBase();
// Every new LLSingleton should be added to/removed from the master list
void add_master();
void remove_master();
// with a little help from our friends.
template <class T> friend struct LLSingleton_manage_master;
// Maintain a stack of the LLSingleton subclass instance currently being
// initialized. We use this to notice direct dependencies: we want to know
// if A requires B. We deduce a dependency if while initializing A,
// control reaches B::getInstance().
// We want &A to be at the top of that stack during both A::A() and
// A::initSingleton(), since a call to B::getInstance() might occur during
// either.
// Unfortunately the desired timespan does not correspond neatly with a
// single C++ scope, else we'd use RAII to track it. But we do know that
// LLSingletonBase's constructor definitely runs just before
// LLSingleton's, which runs just before the specific subclass's.
void push_initializing(const char*);
// LLSingleton is, and must remain, the only caller to initSingleton().
// That being the case, we control exactly when it happens -- and we can
// pop the stack immediately thereafter.
void pop_initializing();
// Remove 'this' from the init stack in case of exception in the
// LLSingleton subclass constructor.
static void reset_initializing(list_t::size_type size);
protected:
// If a given call to B::getInstance() happens during either A::A() or
// A::initSingleton(), record that A directly depends on B.
void capture_dependency();
// delegate logging calls to llsingleton.cpp
public:
typedef std::initializer_list<const std::string> string_params;
protected:
static void logerrs (const string_params&);
static void logwarns (const string_params&);
static void loginfos (const string_params&);
static void logdebugs(const string_params&);
static std::string demangle(const char* mangled);
// these classname() declarations restate template functions declared in
// llerror.h because we avoid #including that here
template <typename T>
static std::string classname() { return demangle(typeid(T).name()); }
template <typename T>
static std::string classname(T* ptr) { return demangle(typeid(*ptr).name()); }
// Default methods in case subclass doesn't declare them.
virtual void initSingleton() {}
virtual void cleanupSingleton() {}
// internal wrapper around calls to cleanupSingleton()
void cleanup_();
// deleteSingleton() isn't -- and shouldn't be -- a virtual method. It's a
// class static. However, given only Foo*, deleteAll() does need to be
// able to reach Foo::deleteSingleton(). Make LLSingleton (which declares
// deleteSingleton()) store a pointer here. Since we know it's a static
// class method, a classic-C function pointer will do.
void (*mDeleteSingleton)();
public:
/**
* deleteAll() calls the cleanupSingleton() and deleteSingleton() methods
* for every LLSingleton constructed since the start of the last
* deleteAll() call. (Any LLSingleton constructed DURING a deleteAll()
* call won't be cleaned up until the next deleteAll() call.)
* deleteSingleton() deletes and destroys its LLSingleton. Any cleanup
* logic that might take significant realtime -- or throw an exception --
* must not be placed in your LLSingleton's destructor, but rather in its
* cleanupSingleton() method, which is called implicitly by
* deleteSingleton().
*
* The most important property of deleteAll() is that deleteSingleton()
* methods are called in dependency order, leaf classes last. Thus, given
* two LLSingleton subclasses A and B, if A's dependency on B is properly
* expressed as a B::getInstance() or B::instance() call during either
* A::A() or A::initSingleton(), B will be cleaned up after A.
*
* If a cleanupSingleton() or deleteSingleton() method throws an
* exception, the exception is logged, but deleteAll() attempts to
* continue calling the rest of the deleteSingleton() methods.
*/
static void deleteAll();
};
// Most of the time, we want LLSingleton_manage_master() to forward its
// methods to real LLSingletonBase methods.
template <class T>
struct LLSingleton_manage_master
{
void add(LLSingletonBase* sb) { sb->add_master(); }
void remove(LLSingletonBase* sb) { sb->remove_master(); }
void push_initializing(LLSingletonBase* sb) { sb->push_initializing(typeid(T).name()); }
void pop_initializing (LLSingletonBase* sb) { sb->pop_initializing(); }
// used for init stack cleanup in case an LLSingleton subclass constructor
// throws an exception
void reset_initializing(LLSingletonBase::list_t::size_type size)
{
LLSingletonBase::reset_initializing(size);
}
// For any LLSingleton subclass except the MasterList, obtain the size of
// the init stack from the MasterList singleton instance.
LLSingletonBase::list_t::size_type get_initializing_size()
{
return LLSingletonBase::get_initializing_size();
}
void capture_dependency(LLSingletonBase* sb)
{
sb->capture_dependency();
}
};
// But for the specific case of LLSingletonBase::MasterList, don't.
template <>
struct LLSingleton_manage_master<LLSingletonBase::MasterList>
{
void add(LLSingletonBase*) {}
void remove(LLSingletonBase*) {}
void push_initializing(LLSingletonBase*) {}
void pop_initializing (LLSingletonBase*) {}
// since we never pushed, no need to clean up
void reset_initializing(LLSingletonBase::list_t::size_type size) {}
LLSingletonBase::list_t::size_type get_initializing_size() { return 0; }
void capture_dependency(LLSingletonBase*) {}
};
// Now we can implement LLSingletonBase's template constructor.
template <typename DERIVED_TYPE>
LLSingletonBase::LLSingletonBase(tag<DERIVED_TYPE>):
mDeleteSingleton(nullptr)
{
// This is the earliest possible point at which we can push this new
// instance onto the init stack. LLSingleton::constructSingleton() can't
// do it before calling the constructor, because it doesn't have an
// instance pointer until the constructor returns. Fortunately this
// constructor is guaranteed to be called before any subclass constructor.
// Make this new instance the currently-initializing LLSingleton.
LLSingleton_manage_master<DERIVED_TYPE>().push_initializing(this);
}
// forward declare for friend directive within LLSingleton
template <typename DERIVED_TYPE>
class LLParamSingleton;
/**
* LLSingleton implements the getInstance() method part of the Singleton
* pattern. It can't make the derived class constructors protected, though, so
* you have to do that yourself.
*
* Derive your class from LLSingleton, passing your subclass name as
* LLSingleton's template parameter, like so:
*
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
*
* Foo& instance = Foo::instance();
*
* LLSingleton recognizes a couple special methods in your derived class.
*
* If you override LLSingleton<T>::initSingleton(), your method will be called
* immediately after the instance is constructed. This is useful for breaking
* circular dependencies: if you find that your LLSingleton subclass
* constructor references other LLSingleton subclass instances in a chain
* leading back to yours, move the instance reference from your constructor to
* your initSingleton() method.
*
* If you override LLSingleton<T>::cleanupSingleton(), your method will
* implicitly be called by LLSingleton<T>::deleteSingleton() just before the
* instance is destroyed. We introduce a special cleanupSingleton() method
* because cleanupSingleton() operations can involve nontrivial realtime, or
* throw an exception. A destructor should do neither!
*
* If your cleanupSingleton() method throws an exception, we log that
* exception but carry on.
*
* If at some point you call LLSingletonBase::deleteAll(), all remaining
* LLSingleton<T> instances will be destroyed in reverse dependency order. (Or
* call MySubclass::deleteSingleton() to specifically destroy the canonical
* MySubclass instance.)
*
* That is, consider LLSingleton subclasses C, B and A. A depends on B, which
* in turn depends on C. These dependencies are expressed as calls to
* B::instance() or B::getInstance(), and C::instance() or C::getInstance().
* It shouldn't matter whether these calls appear in A::A() or
* A::initSingleton(), likewise B::B() or B::initSingleton().
*
* We promise that if you later call LLSingletonBase::deleteAll():
* 1. A::deleteSingleton() will be called before
* 2. B::deleteSingleton(), which will be called before
* 3. C::deleteSingleton().
* Put differently, if your LLSingleton subclass constructor or
* initSingleton() method explicitly depends on some other LLSingleton
* subclass, you may continue to rely on that other subclass in your
* cleanupSingleton() method.
*/
template <typename DERIVED_TYPE>
class LLSingleton : public LLSingletonBase
{
private:
// LLSingleton<DERIVED_TYPE> must have a distinct instance of
// SingletonData for every distinct DERIVED_TYPE. It's tempting to
// consider hoisting SingletonData up into LLSingletonBase. Don't do it.
struct SingletonData
{
// Use a recursive_mutex in case of constructor circularity. With a
// non-recursive mutex, that would result in deadlock.
typedef std::recursive_mutex mutex_t;
mutex_t mMutex; // LockStatic looks for mMutex
EInitState mInitState{UNINITIALIZED};
DERIVED_TYPE* mInstance{nullptr};
};
typedef llthread::LockStatic<SingletonData> LockStatic;
// Allow LLParamSingleton subclass -- but NOT DERIVED_TYPE itself -- to
// access our private members.
friend class LLParamSingleton<DERIVED_TYPE>;
// LLSingleton only supports a nullary constructor. However, the specific
// purpose for its subclass LLParamSingleton is to support Singletons
// requiring constructor arguments. constructSingleton() supports both use
// cases.
// Accepting LockStatic& requires that the caller has already locked our
// static data before calling.
template <typename... Args>
static void constructSingleton(LockStatic& lk, Args&&... args)
{
auto prev_size = LLSingleton_manage_master<DERIVED_TYPE>().get_initializing_size();
// Any getInstance() calls after this point are from within constructor
lk->mInitState = CONSTRUCTING;
try
{
lk->mInstance = new DERIVED_TYPE(std::forward<Args>(args)...);
}
catch (const std::exception& err)
{
// LLSingletonBase might -- or might not -- have pushed the new
// instance onto the init stack before the exception. Reset the
// init stack to its previous size BEFORE logging so log-machinery
// LLSingletons don't record a dependency on DERIVED_TYPE!
LLSingleton_manage_master<DERIVED_TYPE>().reset_initializing(prev_size);
logwarns({"Error constructing ", classname<DERIVED_TYPE>(),
": ", err.what()});
// There isn't a separate EInitState value meaning "we attempted
// to construct this LLSingleton subclass but could not," so use
// DELETED. That seems slightly more appropriate than UNINITIALIZED.
lk->mInitState = DELETED;
// propagate the exception
throw;
}
// Any getInstance() calls after this point are from within initSingleton()
lk->mInitState = INITIALIZING;
try
{
// initialize singleton after constructing it so that it can
// reference other singletons which in turn depend on it, thus
// breaking cyclic dependencies
lk->mInstance->initSingleton();
lk->mInitState = INITIALIZED;
// pop this off stack of initializing singletons
pop_initializing(lk->mInstance);
}
catch (const std::exception& err)
{
// pop this off stack of initializing singletons here, too --
// BEFORE logging, so log-machinery LLSingletons don't record a
// dependency on DERIVED_TYPE!
pop_initializing(lk->mInstance);
logwarns({"Error in ", classname<DERIVED_TYPE>(),
"::initSingleton(): ", err.what()});
// Get rid of the instance entirely. This call depends on our
// recursive_mutex. We could have a deleteSingleton(LockStatic&)
// overload and pass lk, but we don't strictly need it.
deleteSingleton();
// propagate the exception
throw;
}
}
static void pop_initializing(LLSingletonBase* sb)
{
// route through LLSingleton_manage_master so we Do The Right Thing
// (namely, nothing) for MasterList
LLSingleton_manage_master<DERIVED_TYPE>().pop_initializing(sb);
}
static void capture_dependency(LLSingletonBase* sb)
{
// By this point, if DERIVED_TYPE was pushed onto the initializing
// stack, it has been popped off. So the top of that stack, if any, is
// an LLSingleton that directly depends on DERIVED_TYPE. If
// getInstance() was called by another LLSingleton, rather than from
// vanilla application code, record the dependency.
LLSingleton_manage_master<DERIVED_TYPE>().capture_dependency(sb);
}
// We know of no way to instruct the compiler that every subclass
// constructor MUST be private. However, we can make the LLSINGLETON()
// macro both declare a private constructor and provide the required
// friend declaration. How can we ensure that every subclass uses
// LLSINGLETON()? By making that macro provide a definition for this pure
// virtual method. If you get "can't instantiate class due to missing pure
// virtual method" for this method, then add LLSINGLETON(yourclass) in the
// subclass body.
virtual void you_must_use_LLSINGLETON_macro() = 0;
protected:
// Pass DERIVED_TYPE explicitly to LLSingletonBase's constructor because,
// until our subclass constructor completes, *this isn't yet a
// full-fledged DERIVED_TYPE.
LLSingleton(): LLSingletonBase(LLSingletonBase::tag<DERIVED_TYPE>())
{
// populate base-class function pointer with the static
// deleteSingleton() function for this particular specialization
mDeleteSingleton = &deleteSingleton;
// add this new instance to the master list
LLSingleton_manage_master<DERIVED_TYPE>().add(this);
}
protected:
virtual ~LLSingleton()
{
// This phase of cleanup is performed in the destructor rather than in
// deleteSingleton() to defend against manual deletion. When we moved
// cleanup to deleteSingleton(), we hit crashes due to dangling
// pointers in the MasterList.
LockStatic lk;
lk->mInstance = nullptr;
lk->mInitState = DELETED;
// Remove this instance from the master list.
LLSingleton_manage_master<DERIVED_TYPE>().remove(this);
}
public:
/**
* @brief Cleanup and destroy the singleton instance.
*
* deleteSingleton() calls this instance's cleanupSingleton() method and
* then destroys the instance.
*
* A subsequent call to LLSingleton<T>::getInstance() will construct a new
* instance of the class.
*
* Without an explicit call to LLSingletonBase::deleteAll(), or
* LLSingleton<T>::deleteSingleton(), LLSingleton instances are simply
* leaked. (Allowing implicit destruction at shutdown caused too many
* problems.)
*/
static void deleteSingleton()
{
// Hold the lock while we call cleanupSingleton() and the destructor.
// Our destructor also instantiates LockStatic, requiring a recursive
// mutex.
LockStatic lk;
// of course, only cleanup and delete if there's something there
if (lk->mInstance)
{
lk->mInstance->cleanup_();
delete lk->mInstance;
// destructor clears mInstance (and mInitState)
}
}
static DERIVED_TYPE* getInstance()
{
LL_PROFILE_ZONE_SCOPED;
// We know the viewer has LLSingleton dependency circularities. If you
// feel strongly motivated to eliminate them, cheers and good luck.
// (At that point we could consider a much simpler locking mechanism.)
// If A and B depend on each other, and thread T1 requests A at the
// same moment thread T2 requests B, you could get a sequence like this:
// - T1 locks A
// - T2 locks B
// - T1, having constructed A, calls A::initSingleton(), which calls
// B::getInstance() and blocks on B's lock
// - T2, having constructed B, calls B::initSingleton(), which calls
// A::getInstance() and blocks on A's lock
// In other words, classic deadlock.
// Avoid that by constructing and initializing every LLSingleton on
// the main thread. In that scenario:
// - T1 locks A
// - T2 locks B
// - T1 discovers A is UNINITIALIZED, so it queues a task for the main
// thread, unlocks A and blocks on the std::future.
// - T2 discovers B is UNINITIALIZED, so it queues a task for the main
// thread, unlocks B and blocks on the std::future.
// - The main thread executes T1's request for A. It locks A and
// starts to construct it.
// - A::initSingleton() calls B::getInstance(). Fine: nobody's holding
// B's lock.
// - The main thread locks B, constructs B, calls B::initSingleton(),
// which calls A::getInstance(), which returns A.
// - B::getInstance() returns B to A::initSingleton(), unlocking B.
// - A::getInstance() returns A to the task wrapper, unlocking A.
// - The task wrapper passes A to T1 via the future. T1 resumes.
// - The main thread executes T2's request for B. Oh look, B already
// exists. The task wrapper passes B to T2 via the future. T2
// resumes.
// This still works even if one of T1 or T2 *is* the main thread.
// This still works even if thread T3 requests B at the same moment as
// T2. Finding B still UNINITIALIZED, T3 also queues a task for the
// main thread, unlocks B and blocks on a (distinct) std::future. By
// the time the main thread executes T3's request for B, B already
// exists, and is simply delivered via the future.
{ // nested scope for 'lk'
// In case racing threads call getInstance() at the same moment,
// serialize the calls.
LockStatic lk;
switch (lk->mInitState)
{
case CONSTRUCTING:
// here if DERIVED_TYPE's constructor (directly or indirectly)
// calls DERIVED_TYPE::getInstance()
logerrs({"Tried to access singleton ",
classname<DERIVED_TYPE>(),
" from singleton constructor!"});
return nullptr;
case INITIALIZING:
// here if DERIVED_TYPE::initSingleton() (directly or indirectly)
// calls DERIVED_TYPE::getInstance(): go ahead and allow it
case INITIALIZED:
// normal subsequent calls
// record the dependency, if any: check if we got here from another
// LLSingleton's constructor or initSingleton() method
capture_dependency(lk->mInstance);
return lk->mInstance;
case DELETED:
// called after deleteSingleton()
logwarns({"Trying to access deleted singleton ",
classname<DERIVED_TYPE>(),
" -- creating new instance"});
// fall through
case UNINITIALIZED:
case QUEUED:
// QUEUED means some secondary thread has already requested an
// instance, but for present purposes that's semantically
// identical to UNINITIALIZED: either way, we must ourselves
// request an instance.
break;
}
// Here we need to construct a new instance.
if (on_main_thread())
{
// On the main thread, directly construct the instance while
// holding the lock.
constructSingleton(lk);
capture_dependency(lk->mInstance);
return lk->mInstance;
}
// Here we need to construct a new instance, but we're on a secondary
// thread.
lk->mInitState = QUEUED;
} // unlock 'lk'
// Per the comment block above, dispatch to the main thread.
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() dispatching to main thread"});
auto instance = LLMainThreadTask::dispatch(
[](){
// VERY IMPORTANT to call getInstance() on the main thread,
// rather than going straight to constructSingleton()!
// During the time window before mInitState is INITIALIZED,
// multiple requests might be queued. It's essential that, as
// the main thread processes them, only the FIRST such request
// actually constructs the instance -- every subsequent one
// simply returns the existing instance.
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() on main thread"});
return getInstance();
});
// record the dependency chain tracked on THIS thread, not the main
// thread (consider a getInstance() overload with a tag param that
// suppresses dep tracking when dispatched to the main thread)
capture_dependency(instance);
loginfos({classname<DERIVED_TYPE>(),
"::getInstance() returning on requesting thread"});
return instance;
}
// Reference version of getInstance()
// Preferred over getInstance() as it disallows checking for nullptr
static DERIVED_TYPE& instance()
{
return *getInstance();
}
// Has this singleton been created yet?
// Use this to avoid accessing singletons before they can safely be constructed.
static bool instanceExists()
{
// defend any access to sData from racing threads
LockStatic lk;
return lk->mInitState == INITIALIZED;
}
// Has this singleton been deleted? This can be useful during shutdown
// processing to avoid "resurrecting" a singleton we thought we'd already
// cleaned up.
static bool wasDeleted()
{
// defend any access to sData from racing threads
LockStatic lk;
return lk->mInitState == DELETED;
}
};
/**
* LLParamSingleton<T> is like LLSingleton<T>, except in the following ways:
*
* * It is NOT instantiated on demand (instance() or getInstance()). You must
* first call initParamSingleton(constructor args...).
* * Before initParamSingleton(), calling instance() or getInstance() dies with
* LL_ERRS.
* * initParamSingleton() may be called only once. A second call dies with
* LL_ERRS.
* * However, distinct initParamSingleton() calls can be used to engage
* different constructors, as long as only one such call is executed at
* runtime.
* * Unlike LLSingleton, an LLParamSingleton cannot be "revived" by an
* instance() or getInstance() call after deleteSingleton().
*
* Importantly, though, each LLParamSingleton subclass does participate in the
* dependency-ordered LLSingletonBase::deleteAll() processing.
*/
template <typename DERIVED_TYPE>
class LLParamSingleton : public LLSingleton<DERIVED_TYPE>
{
private:
typedef LLSingleton<DERIVED_TYPE> super;
using typename super::LockStatic;
// Passes arguments to DERIVED_TYPE's constructor and sets appropriate
// states, returning a pointer to the new instance.
template <typename... Args>
static DERIVED_TYPE* initParamSingleton_(Args&&... args)
{
// In case racing threads both call initParamSingleton() at the same
// time, serialize them. One should initialize; the other should see
// mInitState already set.
LockStatic lk;
// For organizational purposes this function shouldn't be called twice
if (lk->mInitState != super::UNINITIALIZED)
{
super::logerrs({"Tried to initialize singleton ",
super::template classname<DERIVED_TYPE>(),
" twice!"});
return nullptr;
}
else if (on_main_thread())
{
// on the main thread, simply construct instance while holding lock
super::logdebugs({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton()"});
super::constructSingleton(lk, std::forward<Args>(args)...);
return lk->mInstance;
}
else
{
// on secondary thread, dispatch to main thread --
// set state so we catch any other calls before the main thread
// picks up the task
lk->mInitState = super::QUEUED;
// very important to unlock here so main thread can actually process
lk.unlock();
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() dispatching to main thread"});
// Normally it would be the height of folly to reference-bind
// 'args' into a lambda to be executed on some other thread! By
// the time that thread executed the lambda, the references would
// all be dangling, and Bad Things would result. But
// LLMainThreadTask::dispatch() promises to block until the passed
// task has completed. So in this case we know the references will
// remain valid until the lambda has run, so we dare to bind
// references.
auto instance = LLMainThreadTask::dispatch(
[&](){
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() on main thread"});
return initParamSingleton_(std::forward<Args>(args)...);
});
super::loginfos({super::template classname<DERIVED_TYPE>(),
"::initParamSingleton() returning on requesting thread"});
return instance;
}
}
public:
using super::deleteSingleton;
using super::instanceExists;
using super::wasDeleted;
/// initParamSingleton() constructs the instance, returning a reference.
/// Pass whatever arguments are required to construct DERIVED_TYPE.
template <typename... Args>
static DERIVED_TYPE& initParamSingleton(Args&&... args)
{
return *initParamSingleton_(std::forward<Args>(args)...);
}
static DERIVED_TYPE* getInstance()
{
// In case racing threads call getInstance() at the same moment as
// initParamSingleton(), serialize the calls.
LockStatic lk;
switch (lk->mInitState)
{
case super::UNINITIALIZED:
case super::QUEUED:
super::logerrs({"Uninitialized param singleton ",
super::template classname<DERIVED_TYPE>()});
break;
case super::CONSTRUCTING:
super::logerrs({"Tried to access param singleton ",
super::template classname<DERIVED_TYPE>(),
" from singleton constructor!"});
break;
case super::INITIALIZING:
// As with LLSingleton, explicitly permit circular calls from
// within initSingleton()
case super::INITIALIZED:
// for any valid call, capture dependencies
super::capture_dependency(lk->mInstance);
return lk->mInstance;
case super::DELETED:
super::logerrs({"Trying to access deleted param singleton ",
super::template classname<DERIVED_TYPE>()});
break;
}
// should never actually get here; this is to pacify the compiler,
// which assumes control might return from logerrs()
return nullptr;
}
// instance() is replicated here so it calls
// LLParamSingleton::getInstance() rather than LLSingleton::getInstance()
// -- avoid making getInstance() virtual
static DERIVED_TYPE& instance()
{
return *getInstance();
}
};
/**
* Initialization locked singleton, only derived class can decide when to initialize.
* Starts locked.
* For cases when singleton has a dependency onto something or.
*
* LLLockedSingleton is like an LLParamSingleton with a nullary constructor.
* It cannot be instantiated on demand (instance() or getInstance() call) --
* it must be instantiated by calling construct(). However, it does
* participate in dependency-ordered LLSingletonBase::deleteAll() processing.
*/
template <typename DT>
class LLLockedSingleton : public LLParamSingleton<DT>
{
typedef LLParamSingleton<DT> super;
public:
using super::deleteSingleton;
using super::getInstance;
using super::instance;
using super::instanceExists;
using super::wasDeleted;
static DT* construct()
{
return super::initParamSingleton();
}
};
/**
* Use LLSINGLETON(Foo); at the start of an LLSingleton<Foo> subclass body
* when you want to declare an out-of-line constructor:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON(Foo);
* public:
* // ...
* };
* // ...
* [inline]
* Foo::Foo() { ... }
* @endcode
*
* Unfortunately, this mechanism does not permit you to define even a simple
* (but nontrivial) constructor within the class body. If it's literally
* trivial, use LLSINGLETON_EMPTY_CTOR(); if not, use LLSINGLETON() and define
* the constructor outside the class body. If you must define it in a header
* file, use 'inline' (unless it's a template class) to avoid duplicate-symbol
* errors at link time.
*/
#define LLSINGLETON(DERIVED_CLASS, ...) \
private: \
/* implement LLSingleton pure virtual method whose sole purpose */ \
/* is to remind people to use this macro */ \
virtual void you_must_use_LLSINGLETON_macro() {} \
friend class LLSingleton<DERIVED_CLASS>; \
DERIVED_CLASS(__VA_ARGS__)
/**
* A slight variance from the above, but includes the "override" keyword
*/
#define LLSINGLETON_C11(DERIVED_CLASS) \
private: \
/* implement LLSingleton pure virtual method whose sole purpose */ \
/* is to remind people to use this macro */ \
virtual void you_must_use_LLSINGLETON_macro() override {} \
friend class LLSingleton<DERIVED_CLASS>; \
DERIVED_CLASS()
/**
* Use LLSINGLETON_EMPTY_CTOR(Foo); at the start of an LLSingleton<Foo>
* subclass body when the constructor is trivial:
*
* @code
* class Foo: public LLSingleton<Foo>
* {
* // use this macro at start of every LLSingleton subclass
* LLSINGLETON_EMPTY_CTOR(Foo);
* public:
* // ...
* };
* @endcode
*/
#define LLSINGLETON_EMPTY_CTOR(DERIVED_CLASS) \
/* LLSINGLETON() is carefully implemented to permit exactly this */ \
LLSINGLETON(DERIVED_CLASS) {}
#define LLSINGLETON_EMPTY_CTOR_C11(DERIVED_CLASS) \
/* LLSINGLETON() is carefully implemented to permit exactly this */ \
LLSINGLETON_C11(DERIVED_CLASS) {}
// Relatively unsafe singleton implementation that is much faster
// and simpler than LLSingleton, but has no dependency tracking
// or inherent thread safety and requires manual invocation of
// createInstance before first use.
template<class T>
class LLSimpleton
{
public:
static T* sInstance;
static void createInstance()
{
llassert(sInstance == nullptr);
sInstance = new T();
}
static inline T* getInstance() { return sInstance; }
static inline T& instance() { return *getInstance(); }
static inline bool instanceExists() { return sInstance != nullptr; }
static void deleteSingleton() {
delete sInstance;
sInstance = nullptr;
}
};
template <class T>
T* LLSimpleton<T>::sInstance{ nullptr };
#endif
|