summaryrefslogtreecommitdiff
path: root/indra/llcommon/llsingleton.cpp
blob: 2a38d6d896268851a867700a088cedd450b5218b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/**
 * @file llsingleton.cpp
 * @author Brad Kittenbrink
 *
 * $LicenseInfo:firstyear=2009&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"
#include "llsingleton.h"

#include "llcoros.h"
#include "lldependencies.h"
#include "llerror.h"
#include "llerrorcontrol.h"
#include "llexception.h"
#include "llmainthreadtask.h"
#include <algorithm>
#include <iostream>                 // std::cerr in dire emergency
#include <sstream>
#include <stdexcept>

// Our master list of all LLSingletons is itself an LLSingleton. We used to
// store it in a function-local static, but that could get destroyed before
// the last of the LLSingletons -- and ~LLSingletonBase() definitely wants to
// remove itself from the master list. Since the whole point of this master
// list is to help track inter-LLSingleton dependencies, and since we have
// this implicit dependency from every LLSingleton to the master list, make it
// an LLSingleton.
class LLSingletonBase::MasterList:
    public LLSingleton<LLSingletonBase::MasterList>
{
private:
    LLSINGLETON_EMPTY_CTOR(MasterList);

    // Independently of the LLSingleton locks governing construction,
    // destruction and other state changes of the MasterList instance itself,
    // we must also defend each of the data structures owned by the
    // MasterList.
    // This must be a recursive_mutex because, while the lock is held for
    // manipulating some data in the master list, we must also check whether
    // it's safe to log -- which involves querying a different LLSingleton --
    // which requires accessing the master list.
    typedef std::recursive_mutex mutex_t;
    LL_PROFILE_MUTEX_NAMED(mutex_t, mMutex, "Singleton MasterList");
    typedef std::unique_lock<decltype(mMutex)> lock_t;

public:
    // Instantiate this to both obtain a reference to MasterList::instance()
    // and lock its mutex for the lifespan of this Lock instance.
    class Lock
    {
    public:
        Lock():
            mMasterList(MasterList::instance()),
            mLock(mMasterList.mMutex)
        {}
        Lock(const Lock&) = delete;
        Lock& operator=(const Lock&) = delete;
        MasterList& get() const { return mMasterList; }
        operator MasterList&() const { return get(); }

    protected:
        MasterList& mMasterList;
        MasterList::lock_t mLock;
    };

private:
    // This is the master list of all instantiated LLSingletons (save the
    // MasterList itself) in arbitrary order. You MUST call dep_sort() before
    // traversing this list.
    list_t mMaster;

public:
    // Instantiate this to obtain a reference to MasterList::mMaster and to
    // hold the MasterList lock for the lifespan of this LockedMaster
    // instance.
    struct LockedMaster: public Lock
    {
        list_t& get() const { return mMasterList.mMaster; }
        operator list_t&() const { return get(); }
    };

private:
    // We need to maintain a stack of LLSingletons currently being
    // initialized, either in the constructor or in initSingleton(). However,
    // managing that as a stack depends on having a DISTINCT 'initializing'
    // stack for every C++ stack in the process! And we have a distinct C++
    // stack for every running coroutine. Therefore this stack must be based
    // on a coroutine-local pointer.
    // This local_ptr isn't static because it's a member of an LLSingleton.
    LLCoros::local_ptr<list_t> mInitializing;

public:
    // Instantiate this to obtain a reference to the coroutine-specific
    // initializing list and to hold the MasterList lock for the lifespan of
    // this LockedInitializing instance.
    struct LockedInitializing: public Lock
    {
    public:
        LockedInitializing():
            // only do the lookup once, cache the result
            // note that the lock is already locked during this lookup
            mList(&mMasterList.get_initializing_())
        {}
        list_t& get() const
        {
            if (! mList)
            {
                LLTHROW(LLException("Trying to use LockedInitializing "
                                    "after cleanup_initializing()"));
            }
            return *mList;
        }
        operator list_t&() const { return get(); }
        void log(const char* verb, const char* name);
        void cleanup_initializing()
        {
            mMasterList.cleanup_initializing_();
            mList = nullptr;
        }

    private:
        // Store pointer since cleanup_initializing() must clear it.
        list_t* mList;
    };

private:
    list_t& get_initializing_()
    {
        LLSingletonBase::list_t* current = mInitializing.get();
        if (! current)
        {
            // If the running coroutine doesn't already have an initializing
            // stack, allocate a new one and save it for future reference.
            current = new LLSingletonBase::list_t();
            mInitializing.reset(current);
        }
        return *current;
    }

    // By the time mInitializing is destroyed, its value for every coroutine
    // except the running one must have been reset() to nullptr. So every time
    // we pop the list to empty, reset() the running coroutine's local_ptr.
    void cleanup_initializing_()
    {
        mInitializing.reset(nullptr);
    }
};

void LLSingletonBase::add_master()
{
    // As each new LLSingleton is constructed, add to the master list.
    // This temporary LockedMaster should suffice to hold the MasterList lock
    // during the push_back() call.
    MasterList::LockedMaster().get().push_back(this);
}

void LLSingletonBase::remove_master()
{
    // When an LLSingleton is destroyed, remove from master list.
    // add_master() used to capture the iterator to the newly-added list item
    // so we could directly erase() it from the master list. Unfortunately
    // that runs afoul of destruction-dependency order problems. So search the
    // master list, and remove this item IF FOUND. We have few enough
    // LLSingletons, and they are so rarely destroyed (once per run), that the
    // cost of a linear search should not be an issue.
    // This temporary LockedMaster should suffice to hold the MasterList lock
    // during the remove() call.
    MasterList::LockedMaster().get().remove(this);
}

//static
LLSingletonBase::list_t::size_type LLSingletonBase::get_initializing_size()
{
    return MasterList::LockedInitializing().get().size();
}

LLSingletonBase::~LLSingletonBase() {}

void LLSingletonBase::push_initializing(const char* name)
{
    MasterList::LockedInitializing locked_list;
    // log BEFORE pushing so logging singletons don't cry circularity
    locked_list.log("Pushing", name);
    locked_list.get().push_back(this);
}

void LLSingletonBase::pop_initializing()
{
    // Lock the MasterList for the duration of this call
    MasterList::LockedInitializing locked_list;
    list_t& list(locked_list.get());

    if (list.empty())
    {
        logerrs({"Underflow in stack of currently-initializing LLSingletons at ",
                classname(this), "::getInstance()"});
    }

    // Now we know list.back() exists: capture it
    LLSingletonBase* back(list.back());
    // and pop it
    list.pop_back();

    // The viewer launches an open-ended number of coroutines. While we don't
    // expect most of them to initialize LLSingleton instances, our present
    // get_initializing() logic could lead to an open-ended number of map
    // entries. So every time we pop the stack back to empty, delete the entry
    // entirely.
    if (list.empty())
    {
        locked_list.cleanup_initializing();
    }

    // Now validate the newly-popped LLSingleton.
    if (back != this)
    {
        logerrs({"Push/pop mismatch in stack of currently-initializing LLSingletons: ",
                classname(this), "::getInstance() trying to pop ",
                classname(back)});
    }

    // log AFTER popping so logging singletons don't cry circularity
    locked_list.log("Popping", typeid(*back).name());
}

void LLSingletonBase::reset_initializing(list_t::size_type size)
{
    // called for cleanup in case the LLSingleton subclass constructor throws
    // an exception

    // The tricky thing about this, the reason we have a separate method
    // instead of just calling pop_initializing(), is (hopefully remote)
    // possibility that the exception happened *before* the
    // push_initializing() call in LLSingletonBase's constructor. So only
    // remove the stack top if in fact we've pushed something more than the
    // previous size.
    MasterList::LockedInitializing locked_list;
    list_t& list(locked_list.get());

    while (list.size() > size)
    {
        list.pop_back();
    }

    // as in pop_initializing()
    if (list.empty())
    {
        locked_list.cleanup_initializing();
    }
}

void LLSingletonBase::MasterList::LockedInitializing::log(const char* verb, const char* name)
{
    LL_DEBUGS("LLSingleton") << verb << ' ' << demangle(name) << ';';
    if (mList)
    {
        for (list_t::const_reverse_iterator ri(mList->rbegin()), rend(mList->rend());
             ri != rend; ++ri)
        {
            LLSingletonBase* sb(*ri);
            LL_CONT << ' ' << classname(sb);
        }
    }
    LL_ENDL;
}

void LLSingletonBase::capture_dependency(LLSingletonBase* sb)
{
    // If we're called very late during application shutdown, the Boost.Fibers
    // library may have shut down, and MasterList::mInitializing.get() might
    // blow up. But if we're called that late, there's really no point in
    // trying to capture this dependency.
    if (boost::fibers::context::active())
    {
        sb->capture_dependency();
    }
}

void LLSingletonBase::capture_dependency()
{
    MasterList::LockedInitializing locked_list;
    list_t& initializing(locked_list.get());
    // Did this getInstance() call come from another LLSingleton, or from
    // vanilla application code? Note that although this is a nontrivial
    // method, the vast majority of its calls arrive here with initializing
    // empty().
    if (! initializing.empty())
    {
        // getInstance() is being called by some other LLSingleton. But -- is
        // this a circularity? That is, does 'this' already appear in the
        // initializing stack?
        // For what it's worth, normally 'initializing' should contain very
        // few elements.
        list_t::const_iterator found =
            std::find(initializing.begin(), initializing.end(), this);
        if (found != initializing.end())
        {
            list_t::const_iterator it_next = found;
            it_next++;

            // Report the circularity. Requiring the coder to dig through the
            // logic to diagnose exactly how we got here is less than helpful.
            std::ostringstream out;
            for ( ; found != initializing.end(); ++found)
            {
                // 'found' is an iterator; *found is an LLSingletonBase*; **found
                // is the actual LLSingletonBase instance.
                LLSingletonBase* foundp(*found);
                out << classname(foundp) << " -> ";
            }
            // Decide which log helper to call.
            if (it_next == initializing.end())
            {
                // Points to self after construction, but during initialization.
                // Singletons can initialize other classes that depend onto them,
                // so this is expected.
                //
                // Example: LLNotifications singleton initializes default channels.
                // Channels register themselves with singleton once done.
                logdebugs({"LLSingleton circularity: ", out.str(),
                          classname(this)});
            }
            else
            {
                // Actual circularity with other singleton (or single singleton is used extensively).
                // Dependency can be unclear.
                logwarns({"LLSingleton circularity: ", out.str(),
                         classname(this)});
            }
        }
        else
        {
            // Here 'this' is NOT already in the 'initializing' stack. Great!
            // Record the dependency.
            // initializing.back() is the LLSingletonBase* currently being
            // initialized. Store 'this' in its mDepends set.
            LLSingletonBase* current(initializing.back());
            if (current->mDepends.insert(this).second)
            {
                // only log the FIRST time we hit this dependency!
                logdebugs({classname(current),
                          " depends on ", classname(this)});
            }
        }
    }
}

//static
LLSingletonBase::vec_t LLSingletonBase::dep_sort()
{
    // While it would theoretically be possible to maintain a static
    // SingletonDeps through the life of the program, dynamically adding and
    // removing LLSingletons as they are created and destroyed, in practice
    // it's less messy to construct it on demand. The overhead of doing so
    // should happen basically once: for deleteAll().
    typedef LLDependencies<LLSingletonBase*> SingletonDeps;
    SingletonDeps sdeps;
    // Lock while traversing the master list
    MasterList::LockedMaster master;
    for (LLSingletonBase* sp : master.get())
    {
        // Build the SingletonDeps structure by adding, for each
        // LLSingletonBase* sp in the master list, sp itself. It has no
        // associated value type in our SingletonDeps, hence the 0. We don't
        // record the LLSingletons it must follow; rather, we record the ones
        // it must precede. Copy its mDepends to a KeyList to express that.
        sdeps.add(sp, 0,
                  SingletonDeps::KeyList(),
                  SingletonDeps::KeyList(sp->mDepends.begin(), sp->mDepends.end()));
    }
    vec_t ret;
    ret.reserve(master.get().size());
    // We should be able to effect this with a transform_iterator that
    // extracts just the first (key) element from each sorted_iterator, then
    // uses vec_t's range constructor... but frankly this is more
    // straightforward, as long as we remember the above reserve() call!
    for (const SingletonDeps::sorted_iterator::value_type pair : sdeps.sort())
    {
        ret.push_back(pair.first);
    }
    // The master list is not itself pushed onto the master list. Add it as
    // the very last entry -- it is the LLSingleton on which ALL others
    // depend! -- so our caller will process it.
    ret.push_back(&master.Lock::get());
    return ret;
}

void LLSingletonBase::cleanup_()
{
    logdebugs({"calling ", classname(this), "::cleanupSingleton()"});
    try
    {
        cleanupSingleton();
    }
    catch (...)
    {
        LOG_UNHANDLED_EXCEPTION(classname(this) + "::cleanupSingleton()");
    }
}

//static
void LLSingletonBase::deleteAll()
{
    // It's essential to traverse these in dependency order.
    for (LLSingletonBase* sp : dep_sort())
    {
        // Capture the class name first: in case of exception, don't count on
        // being able to extract it later.
        const std::string name = classname(sp);
        try
        {
            // Call static method through instance function pointer.
            if (! sp->mDeleteSingleton)
            {
                // This Should Not Happen... but carry on.
                logwarns({name, "::mDeleteSingleton not initialized!"});
            }
            else
            {
                // properly initialized: call it.
                logdebugs({"calling ", name, "::deleteSingleton()"});
                // From this point on, DO NOT DEREFERENCE sp!
                sp->mDeleteSingleton();
            }
        }
        catch (const std::exception& e)
        {
            logwarns({"Exception in ", name, "::deleteSingleton(): ", e.what()});
        }
        catch (...)
        {
            logwarns({"Unknown exception in ", name, "::deleteSingleton()"});
        }
    }
}

/*---------------------------- Logging helpers -----------------------------*/
namespace {

std::ostream& operator<<(std::ostream& out, const LLSingletonBase::string_params& args)
{
    // However many args there are in args, stream each of them to 'out'.
    for (auto arg : args)
    {
        out << arg;
    }
    return out;
}

} // anonymous namespace

//static
void LLSingletonBase::logwarns(const string_params& args)
{
    LL_WARNS("LLSingleton") << args << LL_ENDL;
}

//static
void LLSingletonBase::loginfos(const string_params& args)
{
    LL_INFOS("LLSingleton") << args << LL_ENDL;
}

//static
void LLSingletonBase::logdebugs(const string_params& args)
{
    LL_DEBUGS("LLSingleton") << args << LL_ENDL;
}

//static
void LLSingletonBase::logerrs(const string_params& args)
{
    LL_ERRS("LLSingleton") << args << LL_ENDL;
}

std::string LLSingletonBase::demangle(const char* mangled)
{
    return LLError::Log::demangle(mangled);
}

LLSingletonBase* LLSingletonBase::getInstanceForSecondaryThread(
    const std::string& name,
    const std::string& method,
    const std::function<LLSingletonBase*()>& getInstance)
{
    // Normally it would be the height of folly to reference-bind args into a
    // lambda to be executed on some other thread! By the time that thread
    // executed the lambda, the references would all be dangling, and Bad
    // Things would result. But LLMainThreadTask::dispatch() promises to block
    // the calling thread until the passed task has completed. So in this case
    // we know the references will remain valid until the lambda has run, so
    // we dare to bind references.
    return LLMainThreadTask::dispatch(
        [&name, &method, &getInstance](){
            // VERY IMPORTANT to call getInstance() on the main thread,
            // rather than going straight to constructSingleton()!
            // During the time window before mInitState is INITIALIZED,
            // multiple requests might be queued. It's essential that, as
            // the main thread processes them, only the FIRST such request
            // actually constructs the instance -- every subsequent one
            // simply returns the existing instance.
            loginfos({name, "::", method, " on main thread"});
            return getInstance();
        });
}