1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
/**
* @file llsdutil.cpp
* @author Phoenix
* @date 2006-05-24
* @brief Implementation of classes, functions, etc, for using structured data.
*
* $LicenseInfo:firstyear=2006&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llsdutil.h"
#if LL_WINDOWS
# define WIN32_LEAN_AND_MEAN
# include <winsock2.h> // for htonl
#elif LL_LINUX || LL_SOLARIS
# include <netinet/in.h>
#elif LL_DARWIN
# include <arpa/inet.h>
#endif
#include "llsdserialize.h"
#include "stringize.h"
#include "is_approx_equal_fraction.h"
#include <map>
#include <set>
#include <boost/range.hpp>
// U32
LLSD ll_sd_from_U32(const U32 val)
{
std::vector<U8> v;
U32 net_order = htonl(val);
v.resize(4);
memcpy(&(v[0]), &net_order, 4); /* Flawfinder: ignore */
return LLSD(v);
}
U32 ll_U32_from_sd(const LLSD& sd)
{
U32 ret;
std::vector<U8> v = sd.asBinary();
if (v.size() < 4)
{
return 0;
}
memcpy(&ret, &(v[0]), 4); /* Flawfinder: ignore */
ret = ntohl(ret);
return ret;
}
//U64
LLSD ll_sd_from_U64(const U64 val)
{
std::vector<U8> v;
U32 high, low;
high = (U32)(val >> 32);
low = (U32)val;
high = htonl(high);
low = htonl(low);
v.resize(8);
memcpy(&(v[0]), &high, 4); /* Flawfinder: ignore */
memcpy(&(v[4]), &low, 4); /* Flawfinder: ignore */
return LLSD(v);
}
U64 ll_U64_from_sd(const LLSD& sd)
{
U32 high, low;
std::vector<U8> v = sd.asBinary();
if (v.size() < 8)
{
return 0;
}
memcpy(&high, &(v[0]), 4); /* Flawfinder: ignore */
memcpy(&low, &(v[4]), 4); /* Flawfinder: ignore */
high = ntohl(high);
low = ntohl(low);
return ((U64)high) << 32 | low;
}
// IP Address (stored in net order in a U32, so don't need swizzling)
LLSD ll_sd_from_ipaddr(const U32 val)
{
std::vector<U8> v;
v.resize(4);
memcpy(&(v[0]), &val, 4); /* Flawfinder: ignore */
return LLSD(v);
}
U32 ll_ipaddr_from_sd(const LLSD& sd)
{
U32 ret;
std::vector<U8> v = sd.asBinary();
if (v.size() < 4)
{
return 0;
}
memcpy(&ret, &(v[0]), 4); /* Flawfinder: ignore */
return ret;
}
// Converts an LLSD binary to an LLSD string
LLSD ll_string_from_binary(const LLSD& sd)
{
std::vector<U8> value = sd.asBinary();
std::string str;
str.resize(value.size());
memcpy(&str[0], &value[0], value.size());
return str;
}
// Converts an LLSD string to an LLSD binary
LLSD ll_binary_from_string(const LLSD& sd)
{
std::vector<U8> binary_value;
std::string string_value = sd.asString();
for (std::string::iterator iter = string_value.begin();
iter != string_value.end(); ++iter)
{
binary_value.push_back(*iter);
}
binary_value.push_back('\0');
return binary_value;
}
char* ll_print_sd(const LLSD& sd)
{
const U32 bufferSize = 10 * 1024;
static char buffer[bufferSize];
std::ostringstream stream;
//stream.rdbuf()->pubsetbuf(buffer, bufferSize);
stream << LLSDOStreamer<LLSDXMLFormatter>(sd);
stream << std::ends;
strncpy(buffer, stream.str().c_str(), bufferSize);
buffer[bufferSize - 1] = '\0';
return buffer;
}
char* ll_pretty_print_sd_ptr(const LLSD* sd)
{
if (sd)
{
return ll_pretty_print_sd(*sd);
}
return NULL;
}
char* ll_pretty_print_sd(const LLSD& sd)
{
const U32 bufferSize = 100 * 1024;
static char buffer[bufferSize];
std::ostringstream stream;
//stream.rdbuf()->pubsetbuf(buffer, bufferSize);
stream << LLSDOStreamer<LLSDXMLFormatter>(sd, LLSDFormatter::OPTIONS_PRETTY);
stream << std::ends;
strncpy(buffer, stream.str().c_str(), bufferSize);
buffer[bufferSize - 1] = '\0';
return buffer;
}
//compares the structure of an LLSD to a template LLSD and stores the
//"valid" values in a 3rd LLSD. Default values pulled from the template
//if the tested LLSD does not contain the key/value pair.
//Excess values in the test LLSD are ignored in the resultant_llsd.
//If the llsd to test has a specific key to a map and the values
//are not of the same type, false is returned or if the LLSDs are not
//of the same value. Ordering of arrays matters
//Otherwise, returns true
BOOL compare_llsd_with_template(
const LLSD& llsd_to_test,
const LLSD& template_llsd,
LLSD& resultant_llsd)
{
if (
llsd_to_test.isUndefined() &&
template_llsd.isDefined() )
{
resultant_llsd = template_llsd;
return TRUE;
}
else if ( llsd_to_test.type() != template_llsd.type() )
{
resultant_llsd = LLSD();
return FALSE;
}
if ( llsd_to_test.isArray() )
{
//they are both arrays
//we loop over all the items in the template
//verifying that the to_test has a subset (in the same order)
//any shortcoming in the testing_llsd are just taken
//to be the rest of the template
LLSD data;
LLSD::array_const_iterator test_iter;
LLSD::array_const_iterator template_iter;
resultant_llsd = LLSD::emptyArray();
test_iter = llsd_to_test.beginArray();
for (
template_iter = template_llsd.beginArray();
(template_iter != template_llsd.endArray() &&
test_iter != llsd_to_test.endArray());
++template_iter)
{
if ( !compare_llsd_with_template(
*test_iter,
*template_iter,
data) )
{
resultant_llsd = LLSD();
return FALSE;
}
else
{
resultant_llsd.append(data);
}
++test_iter;
}
//so either the test or the template ended
//we do another loop now to the end of the template
//grabbing the default values
for (;
template_iter != template_llsd.endArray();
++template_iter)
{
resultant_llsd.append(*template_iter);
}
}
else if ( llsd_to_test.isMap() )
{
//now we loop over the keys of the two maps
//any excess is taken from the template
//excess is ignored in the test
LLSD value;
LLSD::map_const_iterator template_iter;
resultant_llsd = LLSD::emptyMap();
for (
template_iter = template_llsd.beginMap();
template_iter != template_llsd.endMap();
++template_iter)
{
if ( llsd_to_test.has(template_iter->first) )
{
//the test LLSD has the same key
if ( !compare_llsd_with_template(
llsd_to_test[template_iter->first],
template_iter->second,
value) )
{
resultant_llsd = LLSD();
return FALSE;
}
else
{
resultant_llsd[template_iter->first] = value;
}
}
else
{
//test llsd doesn't have it...take the
//template as default value
resultant_llsd[template_iter->first] =
template_iter->second;
}
}
}
else
{
//of same type...take the test llsd's value
resultant_llsd = llsd_to_test;
}
return TRUE;
}
/*****************************************************************************
* Helpers for llsd_matches()
*****************************************************************************/
// raw data used for LLSD::Type lookup
struct Data
{
LLSD::Type type;
const char* name;
} typedata[] =
{
#define def(type) { LLSD::type, #type + 4 }
def(TypeUndefined),
def(TypeBoolean),
def(TypeInteger),
def(TypeReal),
def(TypeString),
def(TypeUUID),
def(TypeDate),
def(TypeURI),
def(TypeBinary),
def(TypeMap),
def(TypeArray)
#undef def
};
// LLSD::Type lookup class into which we load the above static data
class TypeLookup
{
typedef std::map<LLSD::Type, std::string> MapType;
public:
TypeLookup()
{
for (const Data *di(boost::begin(typedata)), *dend(boost::end(typedata)); di != dend; ++di)
{
mMap[di->type] = di->name;
}
}
std::string lookup(LLSD::Type type) const
{
MapType::const_iterator found = mMap.find(type);
if (found != mMap.end())
{
return found->second;
}
return STRINGIZE("<unknown LLSD type " << type << ">");
}
private:
MapType mMap;
};
// static instance of the lookup class
static const TypeLookup sTypes;
// describe a mismatch; phrasing may want tweaking
const std::string op(" required instead of ");
// llsd_matches() wants to identify specifically where in a complex prototype
// structure the mismatch occurred. This entails passing a prefix string,
// empty for the top-level call. If the prototype contains an array of maps,
// and the mismatch occurs in the second map in a key 'foo', we want to
// decorate the returned string with: "[1]['foo']: etc." On the other hand, we
// want to omit the entire prefix -- including colon -- if the mismatch is at
// top level. This helper accepts the (possibly empty) recursively-accumulated
// prefix string, returning either empty or the original string with colon
// appended.
static std::string colon(const std::string& pfx)
{
if (pfx.empty())
return pfx;
return pfx + ": ";
}
// param type for match_types
typedef std::vector<LLSD::Type> TypeVector;
// The scalar cases in llsd_matches() use this helper. In most cases, we can
// accept not only the exact type specified in the prototype, but also other
// types convertible to the expected type. That implies looping over an array
// of such types. If the actual type doesn't match any of them, we want to
// provide a list of acceptable conversions as well as the exact type, e.g.:
// "Integer (or Boolean, Real, String) required instead of UUID". Both the
// implementation and the calling logic are simplified by separating out the
// expected type from the convertible types.
static std::string match_types(LLSD::Type expect, // prototype.type()
const TypeVector& accept, // types convertible to that type
LLSD::Type actual, // type we're checking
const std::string& pfx) // as for llsd_matches
{
// Trivial case: if the actual type is exactly what we expect, we're good.
if (actual == expect)
return "";
// For the rest of the logic, build up a suitable error string as we go so
// we only have to make a single pass over the list of acceptable types.
// If we detect success along the way, we'll simply discard the partial
// error string.
std::ostringstream out;
out << colon(pfx) << sTypes.lookup(expect);
// If there are any convertible types, append that list.
if (! accept.empty())
{
out << " (";
const char* sep = "or ";
for (TypeVector::const_iterator ai(accept.begin()), aend(accept.end());
ai != aend; ++ai, sep = ", ")
{
// Don't forget to return success if we match any of those types...
if (actual == *ai)
return "";
out << sep << sTypes.lookup(*ai);
}
out << ')';
}
// If we got this far, it's because 'actual' was not one of the acceptable
// types, so we must return an error. 'out' already contains colon(pfx)
// and the formatted list of acceptable types, so just append the mismatch
// phrase and the actual type.
out << op << sTypes.lookup(actual);
return out.str();
}
// see docstring in .h file
std::string llsd_matches(const LLSD& prototype, const LLSD& data, const std::string& pfx)
{
// An undefined prototype means that any data is valid.
// An undefined slot in an array or map prototype means that any data
// may fill that slot.
if (prototype.isUndefined())
return "";
// A prototype array must match a data array with at least as many
// entries. Moreover, every prototype entry must match the
// corresponding data entry.
if (prototype.isArray())
{
if (! data.isArray())
{
return STRINGIZE(colon(pfx) << "Array" << op << sTypes.lookup(data.type()));
}
if (data.size() < prototype.size())
{
return STRINGIZE(colon(pfx) << "Array size " << prototype.size() << op
<< "Array size " << data.size());
}
for (LLSD::Integer i = 0; i < prototype.size(); ++i)
{
std::string match(llsd_matches(prototype[i], data[i], STRINGIZE('[' << i << ']')));
if (! match.empty())
{
return match;
}
}
return "";
}
// A prototype map must match a data map. Every key in the prototype
// must have a corresponding key in the data map; every value in the
// prototype must match the corresponding key's value in the data.
if (prototype.isMap())
{
if (! data.isMap())
{
return STRINGIZE(colon(pfx) << "Map" << op << sTypes.lookup(data.type()));
}
// If there are a number of keys missing from the data, it would be
// frustrating to a coder to discover them one at a time, with a big
// build each time. Enumerate all missing keys.
std::ostringstream out;
out << colon(pfx);
const char* init = "Map missing keys: ";
const char* sep = init;
for (LLSD::map_const_iterator mi = prototype.beginMap(); mi != prototype.endMap(); ++mi)
{
if (! data.has(mi->first))
{
out << sep << mi->first;
sep = ", ";
}
}
// So... are we missing any keys?
if (sep != init)
{
return out.str();
}
// Good, the data block contains all the keys required by the
// prototype. Now match the prototype entries.
for (LLSD::map_const_iterator mi2 = prototype.beginMap(); mi2 != prototype.endMap(); ++mi2)
{
std::string match(llsd_matches(mi2->second, data[mi2->first],
STRINGIZE("['" << mi2->first << "']")));
if (! match.empty())
{
return match;
}
}
return "";
}
// A String prototype can match String, Boolean, Integer, Real, UUID,
// Date and URI, because any of these can be converted to String.
if (prototype.isString())
{
static LLSD::Type accept[] =
{
LLSD::TypeBoolean,
LLSD::TypeInteger,
LLSD::TypeReal,
LLSD::TypeUUID,
LLSD::TypeDate,
LLSD::TypeURI
};
return match_types(prototype.type(),
TypeVector(boost::begin(accept), boost::end(accept)),
data.type(),
pfx);
}
// Boolean, Integer, Real match each other or String. TBD: ensure that
// a String value is numeric.
if (prototype.isBoolean() || prototype.isInteger() || prototype.isReal())
{
static LLSD::Type all[] =
{
LLSD::TypeBoolean,
LLSD::TypeInteger,
LLSD::TypeReal,
LLSD::TypeString
};
// Funny business: shuffle the set of acceptable types to include all
// but the prototype's type. Get the acceptable types in a set.
std::set<LLSD::Type> rest(boost::begin(all), boost::end(all));
// Remove the prototype's type because we pass that separately.
rest.erase(prototype.type());
return match_types(prototype.type(),
TypeVector(rest.begin(), rest.end()),
data.type(),
pfx);
}
// UUID, Date and URI match themselves or String.
if (prototype.isUUID() || prototype.isDate() || prototype.isURI())
{
static LLSD::Type accept[] =
{
LLSD::TypeString
};
return match_types(prototype.type(),
TypeVector(boost::begin(accept), boost::end(accept)),
data.type(),
pfx);
}
// We don't yet know the conversion semantics associated with any new LLSD
// data type that might be added, so until we've been extended to handle
// them, assume it's strict: the new type matches only itself. (This is
// true of Binary, which is why we don't handle that case separately.) Too
// bad LLSD doesn't define isConvertible(Type to, Type from).
return match_types(prototype.type(), TypeVector(), data.type(), pfx);
}
bool llsd_equals(const LLSD& lhs, const LLSD& rhs, int bits)
{
// We're comparing strict equality of LLSD representation rather than
// performing any conversions. So if the types aren't equal, the LLSD
// values aren't equal.
if (lhs.type() != rhs.type())
{
return false;
}
// Here we know both types are equal. Now compare values.
switch (lhs.type())
{
case LLSD::TypeUndefined:
// Both are TypeUndefined. There's nothing more to know.
return true;
case LLSD::TypeReal:
// This is where the 'bits' argument comes in handy. If passed
// explicitly, it means to use is_approx_equal_fraction() to compare.
if (bits >= 0)
{
return is_approx_equal_fraction(lhs.asReal(), rhs.asReal(), bits);
}
// Otherwise we compare bit representations, and the usual caveats
// about comparing floating-point numbers apply. Omitting 'bits' when
// comparing Real values is only useful when we expect identical bit
// representation for a given Real value, e.g. for integer-valued
// Reals.
return (lhs.asReal() == rhs.asReal());
#define COMPARE_SCALAR(type) \
case LLSD::Type##type: \
/* LLSD::URI has operator!=() but not operator==() */ \
/* rely on the optimizer for all others */ \
return (! (lhs.as##type() != rhs.as##type()))
COMPARE_SCALAR(Boolean);
COMPARE_SCALAR(Integer);
COMPARE_SCALAR(String);
COMPARE_SCALAR(UUID);
COMPARE_SCALAR(Date);
COMPARE_SCALAR(URI);
COMPARE_SCALAR(Binary);
#undef COMPARE_SCALAR
case LLSD::TypeArray:
{
LLSD::array_const_iterator
lai(lhs.beginArray()), laend(lhs.endArray()),
rai(rhs.beginArray()), raend(rhs.endArray());
// Compare array elements, walking the two arrays in parallel.
for ( ; lai != laend && rai != raend; ++lai, ++rai)
{
// If any one array element is unequal, the arrays are unequal.
if (! llsd_equals(*lai, *rai, bits))
return false;
}
// Here we've reached the end of one or the other array. They're equal
// only if they're BOTH at end: that is, if they have equal length too.
return (lai == laend && rai == raend);
}
case LLSD::TypeMap:
{
// Build a set of all rhs keys.
std::set<LLSD::String> rhskeys;
for (LLSD::map_const_iterator rmi(rhs.beginMap()), rmend(rhs.endMap());
rmi != rmend; ++rmi)
{
rhskeys.insert(rmi->first);
}
// Now walk all the lhs keys.
for (LLSD::map_const_iterator lmi(lhs.beginMap()), lmend(lhs.endMap());
lmi != lmend; ++lmi)
{
// Try to erase this lhs key from the set of rhs keys. If rhs has
// no such key, the maps are unequal. erase(key) returns count of
// items erased.
if (rhskeys.erase(lmi->first) != 1)
return false;
// Both maps have the current key. Compare values.
if (! llsd_equals(lmi->second, rhs[lmi->first], bits))
return false;
}
// We've now established that all the lhs keys have equal values in
// both maps. The maps are equal unless rhs contains a superset of
// those keys.
return rhskeys.empty();
}
default:
// We expect that every possible type() value is specifically handled
// above. Failing to extend this switch to support a new LLSD type is
// an error that must be brought to the coder's attention.
LL_ERRS("llsd_equals") << "llsd_equals(" << lhs << ", " << rhs << ", " << bits << "): "
"unknown type " << lhs.type() << LL_ENDL;
return false; // pacify the compiler
}
}
|