1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
/**
* @file llrand.cpp
* @brief Global random generator.
*
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llrand.h"
#include "lluuid.h"
/**
* Through analysis, we have decided that we want to take values which
* are close enough to 1.0 to map back to 0.0. We came to this
* conclusion from noting that:
*
* [0.0, 1.0)
*
* when scaled to the integer set:
*
* [0, 4)
*
* there is some value close enough to 1.0 that when multiplying by 4,
* gets truncated to 4. Therefore:
*
* [0,1-eps] => 0
* [1,2-eps] => 1
* [2,3-eps] => 2
* [3,4-eps] => 3
*
* So 0 gets uneven distribution if we simply clamp. The actual
* clamp utilized in this file is to map values out of range back
* to 0 to restore uniform distribution.
*
* Also, for clamping floats when asking for a distribution from
* [0.0,g) we have determined that for values of g < 0.5, then
* rand*g=g, which is not the desired result. As above, we clamp to 0
* to restore uniform distribution.
*/
template <typename REAL>
inline REAL ll_internal_random();
// *NOTE: The system rand implementation is probably not correct.
#define LL_USE_SYSTEM_RAND 0
/*****************************************************************************
* The LL_USE_SYSTEM_RAND implementation has been disabled since June 2008.
*****************************************************************************/
#if LL_USE_SYSTEM_RAND
#include <cstdlib>
class LLSeedRand
{
public:
LLSeedRand()
{
#if LL_WINDOWS
srand(LLUUID::getRandomSeed());
#else
srand48(LLUUID::getRandomSeed());
#endif
}
};
static LLSeedRand sRandomSeeder;
template <>
inline F64 ll_internal_random<F64>()
{
#if LL_WINDOWS
return (F64)rand() / (F64)(RAND_MAX+1);
#else
return drand48();
#endif
}
/*****************************************************************************
* This is the implementation we've been using.
*****************************************************************************/
#else // LL_USE_SYSTEM_RAND
static LLRandLagFib2281 gRandomGenerator(LLUUID::getRandomSeed());
template <>
inline F64 ll_internal_random<F64>()
{
// *HACK: Through experimentation, we have found that dual core
// CPUs (or at least multi-threaded processes) seem to
// occasionally give an obviously incorrect random number -- like
// 5^15 or something. Sooooo, clamp it as described above.
F64 rv = gRandomGenerator();
if(!((rv >= 0.0) && (rv < 1.0))) return fmod(rv, 1.0);
return rv;
}
#endif // LL_USE_SYSTEM_RAND
/*****************************************************************************
* Functions common to both implementations
*****************************************************************************/
template <>
inline F32 ll_internal_random<F32>()
{
return F32(ll_internal_random<F64>());
}
/*------------------------------ F64 aliases -------------------------------*/
inline F64 ll_internal_random_double()
{
return ll_internal_random<F64>();
}
F64 ll_drand()
{
return ll_internal_random_double();
}
/*------------------------------ F32 aliases -------------------------------*/
inline F32 ll_internal_random_float()
{
return ll_internal_random<F32>();
}
F32 ll_frand()
{
return ll_internal_random_float();
}
/*-------------------------- clamped random range --------------------------*/
S32 ll_rand()
{
return ll_rand(RAND_MAX);
}
S32 ll_rand(S32 val)
{
// The clamping rules are described above.
S32 rv = (S32)(ll_internal_random_double() * val);
if(rv == val) return 0;
return rv;
}
template <typename REAL>
REAL ll_grand(REAL val)
{
// The clamping rules are described above.
REAL rv = ll_internal_random<REAL>() * val;
if(val > 0)
{
if(rv >= val) return REAL();
}
else
{
if(rv <= val) return REAL();
}
return rv;
}
F32 ll_frand(F32 val)
{
return ll_grand<F32>(val);
}
F64 ll_drand(F64 val)
{
return ll_grand<F64>(val);
}
|