summaryrefslogtreecommitdiff
path: root/indra/llcommon/llrand.cpp
blob: 513613f543c5cc5eb6ec9ee93cd138e54c7e55a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/**
 * @file llrand.cpp
 * @brief Global random generator.
 *
 * $LicenseInfo:firstyear=2000&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "llrand.h"
#include "lluuid.h"

/**
 * Through analysis, we have decided that we want to take values which
 * are close enough to 1.0 to map back to 0.0.  We came to this
 * conclusion from noting that:
 *
 * [0.0, 1.0)
 *
 * when scaled to the integer set:
 *
 * [0, 4)
 *
 * there is some value close enough to 1.0 that when multiplying by 4,
 * gets truncated to 4. Therefore:
 *
 * [0,1-eps] => 0
 * [1,2-eps] => 1
 * [2,3-eps] => 2
 * [3,4-eps] => 3
 *
 * So 0 gets uneven distribution if we simply clamp. The actual
 * clamp utilized in this file is to map values out of range back
 * to 0 to restore uniform distribution.
 *
 * Also, for clamping floats when asking for a distribution from
 * [0.0,g) we have determined that for values of g < 0.5, then
 * rand*g=g, which is not the desired result. As above, we clamp to 0
 * to restore uniform distribution.
 */

// pRandomGenerator is a stateful static object, which is therefore not
// inherently thread-safe.
//We use a pointer to not construct a huge object in the TLS space, sadly this is necessary
// due to libcef.so on Linux being compiled with TLS model initial-exec (resulting in
// FLAG STATIC_TLS, see readelf libcef.so). CEFs own TLS objects + LLRandLagFib2281 then will exhaust the
// available TLS space, causing media failure.

static thread_local std::unique_ptr< LLRandLagFib2281 > pRandomGenerator = nullptr;

namespace {
    F64 ll_internal_get_rand()
    {
        if( !pRandomGenerator )
        {
            pRandomGenerator.reset(new LLRandLagFib2281(LLUUID::getRandomSeed( ) ));
        }

        return(*pRandomGenerator)();
    }
}

// no default implementation, only specific F64 and F32 specializations
template <typename REAL>
inline REAL ll_internal_random();

template <>
inline F64 ll_internal_random<F64>()
{
    // *HACK: Through experimentation, we have found that dual core
    // CPUs (or at least multi-threaded processes) seem to
    // occasionally give an obviously incorrect random number -- like
    // 5^15 or something. Sooooo, clamp it as described above.
    F64 rv{ ll_internal_get_rand() };
    if(!((rv >= 0.0) && (rv < 1.0))) return fmod(rv, 1.0);
    return rv;
}

template <>
inline F32 ll_internal_random<F32>()
{
    // *HACK: clamp the result as described above.
    // Per Monty, it's important to clamp using the correct fmodf() rather
    // than expanding to F64 for fmod() and then truncating back to F32. Prior
    // to this change, we were getting sporadic ll_frand() == 1.0 results.
    F32 rv{ narrow<F64>(ll_internal_get_rand()) };
    if(!((rv >= 0.0f) && (rv < 1.0f))) return fmodf(rv, 1.0f);
    return rv;
}

/*------------------------------ F64 aliases -------------------------------*/
inline F64 ll_internal_random_double()
{
    return ll_internal_random<F64>();
}

F64 ll_drand()
{
    return ll_internal_random_double();
}

/*------------------------------ F32 aliases -------------------------------*/
inline F32 ll_internal_random_float()
{
    return ll_internal_random<F32>();
}

F32 ll_frand()
{
    return ll_internal_random_float();
}

/*-------------------------- clamped random range --------------------------*/
S32 ll_rand()
{
    return ll_rand(RAND_MAX);
}

S32 ll_rand(S32 val)
{
    // The clamping rules are described above.
    S32 rv = (S32)(ll_internal_random_double() * val);
    if(rv == val) return 0;
    return rv;
}

template <typename REAL>
REAL ll_grand(REAL val)
{
    // The clamping rules are described above.
    REAL rv = ll_internal_random<REAL>() * val;
    if(val > 0)
    {
        if(rv >= val) return REAL();
    }
    else
    {
        if(rv <= val) return REAL();
    }
    return rv;
}

F32 ll_frand(F32 val)
{
    return ll_grand<F32>(val);
}

F64 ll_drand(F64 val)
{
    return ll_grand<F64>(val);
}