summaryrefslogtreecommitdiff
path: root/indra/llcommon/llprocessor.cpp
blob: 51b1b967f10c5cd40b5688edf55bbcd48a930efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
/**
 * @file llprocessor.cpp
 * @brief Code to figure out the processor. Originally by Benjamin Jurke.
 *
 * $LicenseInfo:firstyear=2002&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"
#include "llprocessor.h"
#include "llstring.h"
#include "stringize.h"
#include "llerror.h"

#include <iomanip>
//#include <memory>

#if LL_WINDOWS
#   include "llwin32headers.h"
#   define _interlockedbittestandset _renamed_interlockedbittestandset
#   define _interlockedbittestandreset _renamed_interlockedbittestandreset
#   include <intrin.h>
#   undef _interlockedbittestandset
#   undef _interlockedbittestandreset
#endif

#include "llsd.h"

class LLProcessorInfoImpl; // foward declaration for the mImpl;

namespace
{
    enum cpu_info
    {
        eBrandName = 0,
        eFrequency,
        eVendor,
        eStepping,
        eFamily,
        eExtendedFamily,
        eModel,
        eExtendedModel,
        eType,
        eBrandID,
        eFamilyName
    };


    const char* cpu_info_names[] =
    {
        "Processor Name",
        "Frequency",
        "Vendor",
        "Stepping",
        "Family",
        "Extended Family",
        "Model",
        "Extended Model",
        "Type",
        "Brand ID",
        "Family Name"
    };

    enum cpu_config
    {
        eMaxID,
        eMaxExtID,
        eCLFLUSHCacheLineSize,
        eAPICPhysicalID,
        eCacheLineSize,
        eL2Associativity,
        eCacheSizeK,
        eFeatureBits,
        eExtFeatureBits
    };

    const char* cpu_config_names[] =
    {
        "Max Supported CPUID level",
        "Max Supported Ext. CPUID level",
        "CLFLUSH cache line size",
        "APIC Physical ID",
        "Cache Line Size",
        "L2 Associativity",
        "Cache Size",
        "Feature Bits",
        "Ext. Feature Bits"
    };



    // *NOTE:Mani - this contains the elements we reference directly and extensions beyond the first 32.
    // The rest of the names are referenced by bit maks returned from cpuid.
    enum cpu_features
    {
        eSSE_Ext=25,
        eSSE2_Ext=26,

        eSSE3_Features=32,
        eMONTIOR_MWAIT=33,
        eCPLDebugStore=34,
        eThermalMonitor2=35,
        eAltivec=36,
        eSSE3S_Features = 37,
        eSSE4_1_Features = 38,
        eSSE4_2_Features = 39,
        eSSE4a_Features = 40,
    };

    const char* cpu_feature_names[] =
    {
        "x87 FPU On Chip",
        "Virtual-8086 Mode Enhancement",
        "Debugging Extensions",
        "Page Size Extensions",
        "Time Stamp Counter",
        "RDMSR and WRMSR Support",
        "Physical Address Extensions",
        "Machine Check Exception",
        "CMPXCHG8B Instruction",
        "APIC On Chip",
        "Unknown1",
        "SYSENTER and SYSEXIT",
        "Memory Type Range Registers",
        "PTE Global Bit",
        "Machine Check Architecture",
        "Conditional Move/Compare Instruction",
        "Page Attribute Table",
        "Page Size Extension",
        "Processor Serial Number",
        "CFLUSH Extension",
        "Unknown2",
        "Debug Store",
        "Thermal Monitor and Clock Ctrl",
        "MMX Technology",
        "FXSAVE/FXRSTOR",
        "SSE Extensions",
        "SSE2 Extensions",
        "Self Snoop",
        "Hyper-threading Technology",
        "Thermal Monitor",
        "Unknown4",
        "Pend. Brk. EN.", // 31 End of FeatureInfo bits

        "SSE3 New Instructions", // 32
        "MONITOR/MWAIT",
        "CPL Qualified Debug Store",
        "Thermal Monitor 2",

        "Altivec",
        "SSE3S Instructions",
        "SSE4.1 Instructions",
        "SSE4.2 Instructions",
        "SSE4a Instructions",
    };

    std::string intel_CPUFamilyName(int composed_family)
    {
        switch(composed_family)
        {
        case 3: return "Intel i386";
        case 4: return "Intel i486";
        case 5: return "Intel Pentium";
        case 6: return "Intel Pentium Pro/2/3, Core";
        case 7: return "Intel Itanium (IA-64)";
        case 0xF: return "Intel Pentium 4";
        case 0x10: return "Intel Itanium 2 (IA-64)";
        }
        return STRINGIZE("Intel <unknown 0x" << std::hex << composed_family << ">");
    }

    std::string amd_CPUFamilyName(int composed_family)
    {
        // https://en.wikipedia.org/wiki/List_of_AMD_CPU_microarchitectures
        // https://developer.amd.com/resources/developer-guides-manuals/
        switch(composed_family)
        {
        case 4: return "AMD 80486/5x86";
        case 5: return "AMD K5/K6";
        case 6: return "AMD K7";
        case 0xF: return "AMD K8";
        case 0x10: return "AMD K8L";
        case 0x12: return "AMD K10";
        case 0x14: return "AMD Bobcat";
        case 0x15: return "AMD Bulldozer";
        case 0x16: return "AMD Jaguar";
        case 0x17: return "AMD Zen/Zen+/Zen2";
        case 0x18: return "AMD Hygon Dhyana";
        case 0x19: return "AMD Zen 3";
        }
        return STRINGIZE("AMD <unknown 0x" << std::hex << composed_family << ">");
    }

    std::string compute_CPUFamilyName(const char* cpu_vendor, int family, int ext_family)
    {
        const char* intel_string = "GenuineIntel";
        const char* amd_string = "AuthenticAMD";
        if (LLStringUtil::startsWith(cpu_vendor, intel_string))
        {
            U32 composed_family = family + ext_family;
            return intel_CPUFamilyName(composed_family);
        }
        else if (LLStringUtil::startsWith(cpu_vendor, amd_string))
        {
            U32 composed_family = (family == 0xF)
                ? family + ext_family
                : family;
            return amd_CPUFamilyName(composed_family);
        }
        return STRINGIZE("Unrecognized CPU vendor <" << cpu_vendor << ">");
    }

} // end unnamed namespace

// The base class for implementations.
// Each platform should override this class.
class LLProcessorInfoImpl
{
public:
    LLProcessorInfoImpl()
    {
        mProcessorInfo["info"] = LLSD::emptyMap();
        mProcessorInfo["config"] = LLSD::emptyMap();
        mProcessorInfo["extension"] = LLSD::emptyMap();
    }
    virtual ~LLProcessorInfoImpl() {}

    F64 getCPUFrequency() const
    {
        return getInfo(eFrequency, 0).asReal();
    }

    bool hasSSE() const
    {
        return hasExtension(cpu_feature_names[eSSE_Ext]);
    }

    bool hasSSE2() const
    {
        return hasExtension(cpu_feature_names[eSSE2_Ext]);
    }

    bool hasSSE3() const
    {
        return hasExtension(cpu_feature_names[eSSE3_Features]);
    }

    bool hasSSE3S() const
    {
        return hasExtension(cpu_feature_names[eSSE3S_Features]);
    }

    bool hasSSE41() const
    {
        return hasExtension(cpu_feature_names[eSSE4_1_Features]);
    }

    bool hasSSE42() const
    {
        return hasExtension(cpu_feature_names[eSSE4_2_Features]);
    }

    bool hasSSE4a() const
    {
        return hasExtension(cpu_feature_names[eSSE4a_Features]);
    }

    bool hasAltivec() const
    {
        return hasExtension("Altivec");
    }

    std::string getCPUFamilyName() const { return getInfo(eFamilyName, "Unset family").asString(); }
    std::string getCPUBrandName() const { return getInfo(eBrandName, "Unset brand").asString(); }

    // This is virtual to support a different linux format.
    // *NOTE:Mani - I didn't want to screw up server use of this data...
    virtual std::string getCPUFeatureDescription() const
    {
        std::ostringstream out;
        out << std::endl << std::endl;
        out << "// CPU General Information" << std::endl;
        out << "//////////////////////////" << std::endl;
        out << "Processor Name:   " << getCPUBrandName() << std::endl;
        out << "Frequency:        " << getCPUFrequency() << " MHz" << std::endl;
        out << "Vendor:           " << getInfo(eVendor, "Unset vendor").asString() << std::endl;
        out << "Family:           " << getCPUFamilyName() << " (" << getInfo(eFamily, 0) << ")" << std::endl;
        out << "Extended family:  " << getInfo(eExtendedFamily, 0) << std::endl;
        out << "Model:            " << getInfo(eModel, 0) << std::endl;
        out << "Extended model:   " << getInfo(eExtendedModel, 0) << std::endl;
        out << "Type:             " << getInfo(eType, 0) << std::endl;
        out << "Brand ID:         " << getInfo(eBrandID, 0) << std::endl;
        out << std::endl;
        out << "// CPU Configuration" << std::endl;
        out << "//////////////////////////" << std::endl;

        // Iterate through the dictionary of configuration options.
        LLSD configs = mProcessorInfo["config"];
        for(LLSD::map_const_iterator cfgItr = configs.beginMap(); cfgItr != configs.endMap(); ++cfgItr)
        {
            out << cfgItr->first << " = " << cfgItr->second << std::endl;
        }
        out << std::endl;

        out << "// CPU Extensions" << std::endl;
        out << "//////////////////////////" << std::endl;

        for(LLSD::map_const_iterator itr = mProcessorInfo["extension"].beginMap(); itr != mProcessorInfo["extension"].endMap(); ++itr)
        {
            out << "  " << itr->first << std::endl;
        }
        return out.str();
    }

protected:
    void setInfo(cpu_info info_type, const LLSD& value)
    {
        setInfo(cpu_info_names[info_type], value);
    }
    LLSD getInfo(cpu_info info_type, const LLSD& defaultVal) const
    {
        return getInfo(cpu_info_names[info_type], defaultVal);
    }

    void setConfig(cpu_config config_type, const LLSD& value)
    {
        setConfig(cpu_config_names[config_type], value);
    }
    LLSD getConfig(cpu_config config_type, const LLSD& defaultVal) const
    {
        return getConfig(cpu_config_names[config_type], defaultVal);
    }

    void setExtension(const std::string& name) { mProcessorInfo["extension"][name] = "true"; }
    bool hasExtension(const std::string& name) const
    {
        return mProcessorInfo["extension"].has(name);
    }

private:
    void setInfo(const std::string& name, const LLSD& value) { mProcessorInfo["info"][name]=value; }
    LLSD getInfo(const std::string& name, const LLSD& defaultVal) const
    {
        if(mProcessorInfo["info"].has(name))
        {
            return mProcessorInfo["info"][name];
        }
        return defaultVal;
    }
    void setConfig(const std::string& name, const LLSD& value) { mProcessorInfo["config"][name]=value; }
    LLSD getConfig(const std::string& name, const LLSD& defaultVal) const
    {
        LLSD r = mProcessorInfo["config"].get(name);
        return r.isDefined() ? r : defaultVal;
    }

private:

    LLSD mProcessorInfo;
};


#ifdef LL_MSVC
// LL_MSVC and not LLWINDOWS because some of the following code
// uses the MSVC compiler intrinsics __cpuid() and __rdtsc().

// Delays for the specified amount of milliseconds
static void _Delay(unsigned int ms)
{
    LARGE_INTEGER freq, c1, c2;
    __int64 x;

    // Get High-Res Timer frequency
    if (!QueryPerformanceFrequency(&freq))
        return;

    // Convert ms to High-Res Timer value
    x = freq.QuadPart/1000*ms;

    // Get first snapshot of High-Res Timer value
    QueryPerformanceCounter(&c1);
    do
    {
        // Get second snapshot
        QueryPerformanceCounter(&c2);
    }while(c2.QuadPart-c1.QuadPart < x);
    // Loop while (second-first < x)
}

static F64 calculate_cpu_frequency(U32 measure_msecs)
{
    if(measure_msecs == 0)
    {
        return 0;
    }

    // After that we declare some vars and check the frequency of the high
    // resolution timer for the measure process.
    // If there"s no high-res timer, we exit.
    unsigned __int64 starttime, endtime, timedif, freq, start, end, dif;
    if (!QueryPerformanceFrequency((LARGE_INTEGER *) &freq))
    {
        return 0;
    }

    // Now we can init the measure process. We set the process and thread priority
    // to the highest available level (Realtime priority). Also we focus the
    // first processor in the multiprocessor system.
    HANDLE hProcess = GetCurrentProcess();
    HANDLE hThread = GetCurrentThread();
    unsigned long dwCurPriorityClass = GetPriorityClass(hProcess);
    int iCurThreadPriority = GetThreadPriority(hThread);
    DWORD_PTR dwProcessMask, dwSystemMask, dwNewMask = 1;
    GetProcessAffinityMask(hProcess, &dwProcessMask, &dwSystemMask);

    SetPriorityClass(hProcess, REALTIME_PRIORITY_CLASS);
    SetThreadPriority(hThread, THREAD_PRIORITY_TIME_CRITICAL);
    SetProcessAffinityMask(hProcess, dwNewMask);

    //// Now we call a CPUID to ensure, that all other prior called functions are
    //// completed now (serialization)
    //__asm cpuid
    int cpu_info[4] = {-1};
    __cpuid(cpu_info, 0);

    // We ask the high-res timer for the start time
    QueryPerformanceCounter((LARGE_INTEGER *) &starttime);

    // Then we get the current cpu clock and store it
    start = __rdtsc();

    // Now we wart for some msecs
    _Delay(measure_msecs);
    //  Sleep(uiMeasureMSecs);

    // We ask for the end time
    QueryPerformanceCounter((LARGE_INTEGER *) &endtime);

    // And also for the end cpu clock
    end = __rdtsc();

    // Now we can restore the default process and thread priorities
    SetProcessAffinityMask(hProcess, dwProcessMask);
    SetThreadPriority(hThread, iCurThreadPriority);
    SetPriorityClass(hProcess, dwCurPriorityClass);

    // Then we calculate the time and clock differences
    dif = end - start;
    timedif = endtime - starttime;

    // And finally the frequency is the clock difference divided by the time
    // difference.
    F64 frequency = (F64)dif / (((F64)timedif) / freq);

    // At last we just return the frequency that is also stored in the call
    // member var uqwFrequency - converted to MHz
    return frequency  / (F64)1000000;
}

// Windows implementation
class LLProcessorInfoWindowsImpl : public LLProcessorInfoImpl
{
public:
    LLProcessorInfoWindowsImpl()
    {
        getCPUIDInfo();
        setInfo(eFrequency, calculate_cpu_frequency(50));
    }

private:
    void getCPUIDInfo()
    {
        // http://msdn.microsoft.com/en-us/library/hskdteyh(VS.80).aspx

        // __cpuid with an InfoType argument of 0 returns the number of
        // valid Ids in cpu_info[0] and the CPU identification string in
        // the other three array elements. The CPU identification string is
        // not in linear order. The code below arranges the information
        // in a human readable form.
        int cpu_info[4] = {-1};
        __cpuid(cpu_info, 0);
        unsigned int ids = (unsigned int)cpu_info[0];
        setConfig(eMaxID, (S32)ids);

        char cpu_vendor[0x20];
        memset(cpu_vendor, 0, sizeof(cpu_vendor));
        *((int*)cpu_vendor) = cpu_info[1];
        *((int*)(cpu_vendor+4)) = cpu_info[3];
        *((int*)(cpu_vendor+8)) = cpu_info[2];
        setInfo(eVendor, cpu_vendor);
        std::string cmp_vendor(cpu_vendor);
        bool is_amd = false;
        if (cmp_vendor == "AuthenticAMD")
        {
            is_amd = true;
        }

        // Get the information associated with each valid Id
        for(unsigned int i=0; i<=ids; ++i)
        {
            __cpuid(cpu_info, i);

            // Interpret CPU feature information.
            if  (i == 1)
            {
                setInfo(eStepping, cpu_info[0] & 0xf);
                setInfo(eModel, (cpu_info[0] >> 4) & 0xf);
                int family = (cpu_info[0] >> 8) & 0xf;
                setInfo(eFamily, family);
                setInfo(eType, (cpu_info[0] >> 12) & 0x3);
                setInfo(eExtendedModel, (cpu_info[0] >> 16) & 0xf);
                int ext_family = (cpu_info[0] >> 20) & 0xff;
                setInfo(eExtendedFamily, ext_family);
                setInfo(eBrandID, cpu_info[1] & 0xff);

                setInfo(eFamilyName, compute_CPUFamilyName(cpu_vendor, family, ext_family));

                setConfig(eCLFLUSHCacheLineSize, ((cpu_info[1] >> 8) & 0xff) * 8);
                setConfig(eAPICPhysicalID, (cpu_info[1] >> 24) & 0xff);

                if(cpu_info[2] & 0x1)
                {
                    setExtension(cpu_feature_names[eSSE3_Features]);
                }

                if(cpu_info[2] & 0x8)
                {
                    // intel specific SSE3 suplements
                    setExtension(cpu_feature_names[eMONTIOR_MWAIT]);
                }

                if(cpu_info[2] & 0x10)
                {
                    setExtension(cpu_feature_names[eCPLDebugStore]);
                }

                if(cpu_info[2] & 0x100)
                {
                    setExtension(cpu_feature_names[eThermalMonitor2]);
                }

                if (cpu_info[2] & 0x200)
                {
                    setExtension(cpu_feature_names[eSSE3S_Features]);
                }

                if (cpu_info[2] & 0x80000)
                {
                    setExtension(cpu_feature_names[eSSE4_1_Features]);
                }

                if (cpu_info[2] & 0x100000)
                {
                    setExtension(cpu_feature_names[eSSE4_2_Features]);
                }

                unsigned int feature_info = (unsigned int) cpu_info[3];
                for(unsigned int index = 0, bit = 1; index < eSSE3_Features; ++index, bit <<= 1)
                {
                    if(feature_info & bit)
                    {
                        setExtension(cpu_feature_names[index]);
                    }
                }
            }
        }

        // Calling __cpuid with 0x80000000 as the InfoType argument
        // gets the number of valid extended IDs.
        __cpuid(cpu_info, 0x80000000);
        unsigned int ext_ids = cpu_info[0];
        setConfig(eMaxExtID, 0);

        char cpu_brand_string[0x40];
        memset(cpu_brand_string, 0, sizeof(cpu_brand_string));

        // Get the information associated with each extended ID.
        for(unsigned int i=0x80000000; i<=ext_ids; ++i)
        {
            __cpuid(cpu_info, i);

            // Interpret CPU brand string and cache information.
            if (i == 0x80000001)
            {
                if (is_amd)
                {
                    setExtension(cpu_feature_names[eSSE4a_Features]);
                }
            }
            else if (i == 0x80000002)
            {
                memcpy(cpu_brand_string, cpu_info, sizeof(cpu_info));
            }
            else if  (i == 0x80000003)
                memcpy(cpu_brand_string + 16, cpu_info, sizeof(cpu_info));
            else if  (i == 0x80000004)
            {
                memcpy(cpu_brand_string + 32, cpu_info, sizeof(cpu_info));
                setInfo(eBrandName, cpu_brand_string);
            }
            else if  (i == 0x80000006)
            {
                setConfig(eCacheLineSize, cpu_info[2] & 0xff);
                setConfig(eL2Associativity, (cpu_info[2] >> 12) & 0xf);
                setConfig(eCacheSizeK, (cpu_info[2] >> 16) & 0xffff);
            }
        }
    }
};

#elif LL_DARWIN

#include <mach/machine.h>
#include <sys/sysctl.h>

class LLProcessorInfoDarwinImpl : public LLProcessorInfoImpl
{
public:
    LLProcessorInfoDarwinImpl()
    {
        getCPUIDInfo();
        uint64_t frequency = getSysctlInt64("hw.cpufrequency");
        setInfo(eFrequency, (F64)frequency  / (F64)1000000);
    }

    virtual ~LLProcessorInfoDarwinImpl() {}

private:
    int getSysctlInt(const char* name)
    {
        int result = 0;
        size_t len = sizeof(int);
        int error = sysctlbyname(name, (void*)&result, &len, NULL, 0);
        return error == -1 ? 0 : result;
    }

    uint64_t getSysctlInt64(const char* name)
    {
        uint64_t value = 0;
        size_t size = sizeof(value);
        int result = sysctlbyname(name, (void*)&value, &size, NULL, 0);
        if ( result == 0 )
        {
            if ( size == sizeof( uint64_t ) )
                ;
            else if ( size == sizeof( uint32_t ) )
                value = (uint64_t)(( uint32_t *)&value);
            else if ( size == sizeof( uint16_t ) )
                value =  (uint64_t)(( uint16_t *)&value);
            else if ( size == sizeof( uint8_t ) )
                value =  (uint64_t)(( uint8_t *)&value);
            else
            {
                LL_WARNS() << "Unknown type returned from sysctl" << LL_ENDL;
            }
        }

        return result == -1 ? 0 : value;
    }

    void getCPUIDInfo()
    {
        size_t len = 0;

        char cpu_brand_string[0x40];
        len = sizeof(cpu_brand_string);
        memset(cpu_brand_string, 0, len);
        sysctlbyname("machdep.cpu.brand_string", (void*)cpu_brand_string, &len, NULL, 0);
        cpu_brand_string[0x3f] = 0;
        setInfo(eBrandName, cpu_brand_string);

        char cpu_vendor[0x20];
        len = sizeof(cpu_vendor);
        memset(cpu_vendor, 0, len);
        sysctlbyname("machdep.cpu.vendor", (void*)cpu_vendor, &len, NULL, 0);
        cpu_vendor[0x1f] = 0;
        setInfo(eVendor, cpu_vendor);

        setInfo(eStepping, getSysctlInt("machdep.cpu.stepping"));
        setInfo(eModel, getSysctlInt("machdep.cpu.model"));
        int family = getSysctlInt("machdep.cpu.family");
        int ext_family = getSysctlInt("machdep.cpu.extfamily");
        setInfo(eFamily, family);
        setInfo(eExtendedFamily, ext_family);
        setInfo(eFamilyName, compute_CPUFamilyName(cpu_vendor, family, ext_family));
        setInfo(eExtendedModel, getSysctlInt("machdep.cpu.extmodel"));
        setInfo(eBrandID, getSysctlInt("machdep.cpu.brand"));
        setInfo(eType, 0); // ? where to find this?

        //setConfig(eCLFLUSHCacheLineSize, ((cpu_info[1] >> 8) & 0xff) * 8);
        //setConfig(eAPICPhysicalID, (cpu_info[1] >> 24) & 0xff);
        setConfig(eCacheLineSize, getSysctlInt("machdep.cpu.cache.linesize"));
        setConfig(eL2Associativity, getSysctlInt("machdep.cpu.cache.L2_associativity"));
        setConfig(eCacheSizeK, getSysctlInt("machdep.cpu.cache.size"));

        uint64_t feature_info = getSysctlInt64("machdep.cpu.feature_bits");
        S32 *feature_infos = (S32*)(&feature_info);

        setConfig(eFeatureBits, feature_infos[0]);

        for(unsigned int index = 0, bit = 1; index < eSSE3_Features; ++index, bit <<= 1)
        {
            if(feature_info & bit)
            {
                setExtension(cpu_feature_names[index]);
            }
        }

        // *NOTE:Mani - I didn't find any docs that assure me that machdep.cpu.feature_bits will always be
        // The feature bits I think it is. Here's a test:
#ifndef LL_RELEASE_FOR_DOWNLOAD
    #if defined(__i386__) && defined(__PIC__)
            /* %ebx may be the PIC register.  */
        #define __cpuid(level, a, b, c, d)          \
        __asm__ ("xchgl\t%%ebx, %1\n\t"         \
                "cpuid\n\t"                 \
                "xchgl\t%%ebx, %1\n\t"          \
                : "=a" (a), "=r" (b), "=c" (c), "=d" (d)    \
                : "0" (level))
    #else
        #define __cpuid(level, a, b, c, d)          \
        __asm__ ("cpuid\n\t"                    \
                 : "=a" (a), "=b" (b), "=c" (c), "=d" (d)   \
                 : "0" (level))
    #endif

        unsigned int eax, ebx, ecx, edx;
        __cpuid(0x1, eax, ebx, ecx, edx);
        if(feature_infos[0] != (S32)edx)
        {
            LL_WARNS() << "machdep.cpu.feature_bits doesn't match expected cpuid result!" << LL_ENDL;
        }
#endif // LL_RELEASE_FOR_DOWNLOAD


        uint64_t ext_feature_info = getSysctlInt64("machdep.cpu.extfeature_bits");
        S32 *ext_feature_infos = (S32*)(&ext_feature_info);
        setConfig(eExtFeatureBits, ext_feature_infos[0]);


        char cpu_features[1024];
        len = sizeof(cpu_features);
        memset(cpu_features, 0, len);
        sysctlbyname("machdep.cpu.features", (void*)cpu_features, &len, NULL, 0);

        std::string cpu_features_str(cpu_features);
        cpu_features_str = " " + cpu_features_str + " ";

        if (cpu_features_str.find(" SSE3 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE3_Features]);
        }

        if (cpu_features_str.find(" SSSE3 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE3S_Features]);
        }

        if (cpu_features_str.find(" SSE4.1 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE4_1_Features]);
        }

        if (cpu_features_str.find(" SSE4.2 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE4_2_Features]);
        }

        if (cpu_features_str.find(" SSE4A ") != std::string::npos)
        {
            // Not supposed to happen?
            setExtension(cpu_feature_names[eSSE4a_Features]);
        }
    }
};

#elif LL_LINUX

// *NOTE:Mani - eww, macros! srry.
#define LLPI_SET_INFO_STRING(llpi_id, cpuinfo_id) \
        if (!cpuinfo[cpuinfo_id].empty()) \
        { setInfo(llpi_id, cpuinfo[cpuinfo_id]);}

#define LLPI_SET_INFO_INT(llpi_id, cpuinfo_id) \
        {\
            S32 result; \
            if (!cpuinfo[cpuinfo_id].empty() \
                && LLStringUtil::convertToS32(cpuinfo[cpuinfo_id], result)) \
            { setInfo(llpi_id, result);} \
        }

const char CPUINFO_FILE[] = "/proc/cpuinfo";

class LLProcessorInfoLinuxImpl : public LLProcessorInfoImpl {
public:
    LLProcessorInfoLinuxImpl() {
        get_proc_cpuinfo();
    }

    virtual ~LLProcessorInfoLinuxImpl() {}

private:

    F64 getCPUMaxMHZ()
    {
        // Nicky: We just look into cpu0. In theory we could iterate over all cores
        // "/sys/devices/system/cpu/cpu*/cpufreq/cpuinfo_max_freq"
        // But those should not fluctuate that much?
        std::ifstream fIn { "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq" };

        if( !fIn.is_open() )
            return 0.0;

        std::string strLine;
        fIn >> strLine;
        if( strLine.empty() )
            return 0.0l;

        F64 mhz {};
        if( !LLStringUtil::convertToF64(strLine, mhz ) )
            return 0.0;

        mhz = mhz / 1000.0;
        return mhz;
    }

    void get_proc_cpuinfo()
    {
        std::map< std::string, std::string > cpuinfo;
        LLFILE* cpuinfo_fp = LLFile::fopen(CPUINFO_FILE, "rb");
        if(cpuinfo_fp)
        {
            char line[MAX_STRING];
            memset(line, 0, MAX_STRING);
            while(fgets(line, MAX_STRING, cpuinfo_fp))
            {
                // /proc/cpuinfo on Linux looks like:
                // name\t*: value\n
                char* tabspot = strchr( line, '\t' );
                if (tabspot == NULL)
                    continue;
                char* colspot = strchr( tabspot, ':' );
                if (colspot == NULL)
                    continue;
                char* spacespot = strchr( colspot, ' ' );
                if (spacespot == NULL)
                    continue;
                char* nlspot = strchr( line, '\n' );
                if (nlspot == NULL)
                    nlspot = line + strlen( line ); // Fallback to terminating NUL
                std::string linename( line, tabspot );
                std::string llinename(linename);
                LLStringUtil::toLower(llinename);
                std::string lineval( spacespot + 1, nlspot );
                    cpuinfo[ llinename ] = lineval;
            }
            fclose(cpuinfo_fp);
        }
# if LL_X86

        F64 mhzFromSys = getCPUMaxMHZ();
        F64 mhzFromProc {};
        if( !LLStringUtil::convertToF64(cpuinfo["cpu mhz"], mhzFromProc ) )
            mhzFromProc = 0.0;
        if (mhzFromSys > 1.0 && mhzFromSys > mhzFromProc )
        {
            setInfo( eFrequency, mhzFromSys );
        }
        else if (  200.0 < mhzFromProc && mhzFromProc < 10000.0)
        {
            setInfo(eFrequency,(F64)(mhzFromProc));
        }

        LLPI_SET_INFO_STRING(eBrandName, "model name");
        LLPI_SET_INFO_STRING(eVendor, "vendor_id");

        LLPI_SET_INFO_INT(eStepping, "stepping");
        LLPI_SET_INFO_INT(eModel, "model");


        S32 family{};
        if (!cpuinfo["cpu family"].empty()
            && LLStringUtil::convertToS32(cpuinfo["cpu family"], family))
        {
            setInfo(eFamily, family);
        }

        setInfo(eFamilyName, compute_CPUFamilyName(cpuinfo["vendor_id"].c_str(), family, 0));

        // setInfo(eExtendedModel, getSysctlInt("machdep.cpu.extmodel"));
        // setInfo(eBrandID, getSysctlInt("machdep.cpu.brand"));
        // setInfo(eType, 0); // ? where to find this?

        //setConfig(eCLFLUSHCacheLineSize, ((cpu_info[1] >> 8) & 0xff) * 8);
        //setConfig(eAPICPhysicalID, (cpu_info[1] >> 24) & 0xff);
        //setConfig(eCacheLineSize, getSysctlInt("machdep.cpu.cache.linesize"));
        //setConfig(eL2Associativity, getSysctlInt("machdep.cpu.cache.L2_associativity"));
        //setConfig(eCacheSizeK, getSysctlInt("machdep.cpu.cache.size"));

        // Read extensions
        std::string flags = " " + cpuinfo["flags"] + " ";
        LLStringUtil::toLower(flags);

        if( flags.find( " sse " ) != std::string::npos )
        {
            setExtension(cpu_feature_names[eSSE_Ext]);
        }

        if( flags.find( " sse2 " ) != std::string::npos )
        {
            setExtension(cpu_feature_names[eSSE2_Ext]);
        }

        if (flags.find(" pni ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE3_Features]);
        }

        if (flags.find(" ssse3 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE3S_Features]);
        }

        if (flags.find(" sse4_1 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE4_1_Features]);
        }

        if (flags.find(" sse4_2 ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE4_2_Features]);
        }

        if (flags.find(" sse4a ") != std::string::npos)
        {
            setExtension(cpu_feature_names[eSSE4a_Features]);
        }

# endif // LL_X86
    }

    std::string getCPUFeatureDescription() const
    {
        std::ostringstream s;

        // *NOTE:Mani - This is for linux only.
        LLFILE* cpuinfo = LLFile::fopen(CPUINFO_FILE, "rb");
        if(cpuinfo)
        {
            char line[MAX_STRING];
            memset(line, 0, MAX_STRING);
            while(fgets(line, MAX_STRING, cpuinfo))
            {
                line[strlen(line)-1] = ' ';
                s << line;
                s << std::endl;
            }
            fclose(cpuinfo);
            s << std::endl;
        }
        else
        {
            s << "Unable to collect processor information" << std::endl;
        }
        return s.str();
    }

};


#endif // LL_MSVC elif LL_DARWIN elif LL_LINUX

//////////////////////////////////////////////////////
// Interface definition
LLProcessorInfo::LLProcessorInfo() : mImpl(NULL)
{
    // *NOTE:Mani - not thread safe.
    if(!mImpl)
    {
#ifdef LL_MSVC
        static LLProcessorInfoWindowsImpl the_impl;
        mImpl = &the_impl;
#elif LL_DARWIN
        static LLProcessorInfoDarwinImpl the_impl;
        mImpl = &the_impl;
#else
        static LLProcessorInfoLinuxImpl the_impl;
        mImpl = &the_impl;
#endif // LL_MSVC
    }
}


LLProcessorInfo::~LLProcessorInfo() {}
F64MegahertzImplicit LLProcessorInfo::getCPUFrequency() const { return mImpl->getCPUFrequency(); }
bool LLProcessorInfo::hasSSE() const { return mImpl->hasSSE(); }
bool LLProcessorInfo::hasSSE2() const { return mImpl->hasSSE2(); }
bool LLProcessorInfo::hasSSE3() const { return mImpl->hasSSE3(); }
bool LLProcessorInfo::hasSSE3S() const { return mImpl->hasSSE3S(); }
bool LLProcessorInfo::hasSSE41() const { return mImpl->hasSSE41(); }
bool LLProcessorInfo::hasSSE42() const { return mImpl->hasSSE42(); }
bool LLProcessorInfo::hasSSE4a() const { return mImpl->hasSSE4a(); }
bool LLProcessorInfo::hasAltivec() const { return mImpl->hasAltivec(); }
std::string LLProcessorInfo::getCPUFamilyName() const { return mImpl->getCPUFamilyName(); }
std::string LLProcessorInfo::getCPUBrandName() const { return mImpl->getCPUBrandName(); }
std::string LLProcessorInfo::getCPUFeatureDescription() const { return mImpl->getCPUFeatureDescription(); }