1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
/**
* @file lleventdispatcher.h
* @author Nat Goodspeed
* @date 2009-06-18
* @brief Central mechanism for dispatching events by string name. This is
* useful when you have a single LLEventPump listener on which you can
* request different operations, vs. instantiating a different
* LLEventPump for each such operation.
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*
* The invoker machinery that constructs a boost::fusion argument list for use
* with boost::fusion::invoke() is derived from
* http://www.boost.org/doc/libs/1_45_0/libs/function_types/example/interpreter.hpp
* whose license information is copied below:
*
* "(C) Copyright Tobias Schwinger
*
* Use modification and distribution are subject to the boost Software License,
* Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt)."
*/
#if ! defined(LL_LLEVENTDISPATCHER_H)
#define LL_LLEVENTDISPATCHER_H
// nil is too generic a term to be allowed to be a global macro. In
// particular, boost::fusion defines a 'class nil' (properly encapsulated in a
// namespace) that a global 'nil' macro breaks badly.
#if defined(nil)
// Capture the value of the macro 'nil', hoping int is an appropriate type.
static const int nil_(nil);
// Now forget the macro.
#undef nil
// Finally, reintroduce 'nil' as a properly-scoped alias for the previously-
// defined const 'nil_'. Make it static since otherwise it produces duplicate-
// symbol link errors later.
static const int& nil(nil_);
#endif
#include <string>
#include <boost/ptr_container/ptr_map.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/function_types/is_nonmember_callable_builtin.hpp>
#include <boost/function_types/parameter_types.hpp>
#include <boost/function_types/function_arity.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/fusion/include/push_back.hpp>
#include <boost/fusion/include/cons.hpp>
#include <boost/fusion/include/invoke.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/next.hpp>
#include <boost/mpl/deref.hpp>
#include <typeinfo>
#include "llevents.h"
#include "llsdutil.h"
class LLSD;
/**
* Given an LLSD map, examine a string-valued key and call a corresponding
* callable. This class is designed to be contained by an LLEventPump
* listener class that will register some of its own methods, though any
* callable can be used.
*/
class LL_COMMON_API LLEventDispatcher
{
public:
LLEventDispatcher(const std::string& desc, const std::string& key);
virtual ~LLEventDispatcher();
/// @name Register functions accepting(const LLSD&)
//@{
/// Accept any C++ callable with the right signature, typically a
/// boost::bind() expression
typedef boost::function<void(const LLSD&)> Callable;
/**
* Register a @a callable by @a name. The passed @a callable accepts a
* single LLSD value and uses it in any way desired, e.g. extract
* parameters and call some other function. The optional @a required
* parameter is used to validate the structure of each incoming event (see
* llsd_matches()).
*/
void add(const std::string& name,
const std::string& desc,
const Callable& callable,
const LLSD& required=LLSD());
/**
* Special case: a subclass of this class can pass an unbound member
* function pointer (of an LLEventDispatcher subclass) without explicitly
* specifying the <tt>boost::bind()</tt> expression. The passed @a method
* accepts a single LLSD value, presumably containing other parameters.
*/
template <class CLASS>
void add(const std::string& name,
const std::string& desc,
void (CLASS::*method)(const LLSD&),
const LLSD& required=LLSD())
{
addMethod<CLASS>(name, desc, method, required);
}
/// Overload for both const and non-const methods. The passed @a method
/// accepts a single LLSD value, presumably containing other parameters.
template <class CLASS>
void add(const std::string& name,
const std::string& desc,
void (CLASS::*method)(const LLSD&) const,
const LLSD& required=LLSD())
{
addMethod<CLASS>(name, desc, method, required);
}
/*==========================================================================*|
/// Convenience: for LLEventDispatcher, not every callable needs a
/// documentation string. The passed @a callable accepts a single LLSD
/// value, presumably containing other parameters.
template <typename CALLABLE>
void add(const std::string& name,
CALLABLE callable,
const LLSD& required=LLSD())
{
add(name, "", callable, required);
}
|*==========================================================================*/
//@}
/// @name Register functions with arbitrary param lists
//@{
/**
* Register a free function with arbitrary parameters. (This also works
* for static class methods.)
*
* When calling this name, pass an LLSD::Array. Each entry in turn will be
* converted to the corresponding parameter type using LLSDParam.
*/
template<typename Function>
typename boost::enable_if< boost::function_types::is_nonmember_callable_builtin<Function>
>::type add(const std::string& name,
const std::string& desc,
Function f);
/**
* Register a nonstatic class method with arbitrary parameters.
*
* To cover cases such as a method on an LLSingleton we don't yet want to
* instantiate, instead of directly storing an instance pointer, accept a
* nullary callable returning a pointer/reference to the desired class
* instance. If you already have an instance in hand,
* boost::lambda::var(instance) or boost::lambda::constant(instance_ptr)
* produce suitable callables.
*
* When calling this name, pass an LLSD::Array. Each entry in turn will be
* converted to the corresponding parameter type using LLSDParam.
*/
template<typename Method, typename InstanceGetter>
typename boost::enable_if< boost::function_types::is_member_function_pointer<Method>
>::type add(const std::string& name,
const std::string& desc,
Method f,
const InstanceGetter& getter);
/**
* Register a free function with arbitrary parameters. (This also works
* for static class methods.)
*
* Pass an LLSD::Array of parameter names, and optionally another
* LLSD::Array of default parameter values, a la LLSDArgsMapper.
*
* When calling this name, pass an LLSD::Map. We will internally generate
* an LLSD::Array using LLSDArgsMapper and then convert each entry in turn
* to the corresponding parameter type using LLSDParam.
*/
template<typename Function>
typename boost::enable_if< boost::function_types::is_nonmember_callable_builtin<Function>
>::type add(const std::string& name,
const std::string& desc,
Function f,
const LLSD& params,
const LLSD& defaults=LLSD());
/**
* Register a nonstatic class method with arbitrary parameters.
*
* To cover cases such as a method on an LLSingleton we don't yet want to
* instantiate, instead of directly storing an instance pointer, accept a
* nullary callable returning a pointer/reference to the desired class
* instance. If you already have an instance in hand,
* boost::lambda::var(instance) or boost::lambda::constant(instance_ptr)
* produce suitable callables.
*
* Pass an LLSD::Array of parameter names, and optionally another
* LLSD::Array of default parameter values, a la LLSDArgsMapper.
*
* When calling this name, pass an LLSD::Map. We will internally generate
* an LLSD::Array using LLSDArgsMapper and then convert each entry in turn
* to the corresponding parameter type using LLSDParam.
*/
template<typename Method, typename InstanceGetter>
typename boost::enable_if< boost::function_types::is_member_function_pointer<Method>
>::type add(const std::string& name,
const std::string& desc,
Method f,
const InstanceGetter& getter,
const LLSD& params,
const LLSD& defaults=LLSD());
//@}
/// Unregister a callable
bool remove(const std::string& name);
/// Call a registered callable with an explicitly-specified name. If no
/// such callable exists, die with LL_ERRS. If the @a event fails to match
/// the @a required prototype specified at add() time, die with LL_ERRS.
void operator()(const std::string& name, const LLSD& event) const;
/// Call a registered callable with an explicitly-specified name and
/// return <tt>true</tt>. If no such callable exists, return
/// <tt>false</tt>. If the @a event fails to match the @a required
/// prototype specified at add() time, die with LL_ERRS.
bool try_call(const std::string& name, const LLSD& event) const;
/// Extract the @a key value from the incoming @a event, and call the
/// callable whose name is specified by that map @a key. If no such
/// callable exists, die with LL_ERRS. If the @a event fails to match the
/// @a required prototype specified at add() time, die with LL_ERRS.
void operator()(const LLSD& event) const;
/// Extract the @a key value from the incoming @a event, call the callable
/// whose name is specified by that map @a key and return <tt>true</tt>.
/// If no such callable exists, return <tt>false</tt>. If the @a event
/// fails to match the @a required prototype specified at add() time, die
/// with LL_ERRS.
bool try_call(const LLSD& event) const;
/// @name Iterate over defined names
//@{
typedef std::pair<std::string, std::string> NameDesc;
private:
struct DispatchEntry
{
DispatchEntry(const std::string& desc);
std::string mDesc;
virtual void call(const std::string& desc, const LLSD& event) const = 0;
virtual LLSD addMetadata(LLSD) const = 0;
};
typedef boost::ptr_map<std::string, DispatchEntry> DispatchMap;
public:
/// We want the flexibility to redefine what data we store per name,
/// therefore our public interface doesn't expose DispatchMap iterators,
/// or DispatchMap itself, or DispatchEntry. Instead we explicitly
/// transform each DispatchMap item to NameDesc on dereferencing.
typedef boost::transform_iterator<NameDesc(*)(DispatchMap::value_type), DispatchMap::iterator> const_iterator;
const_iterator begin() const
{
// Originally we used DispatchMap::const_iterator, which Just Worked
// when DispatchMap was a std::map. Now that it's a boost::ptr_map,
// using DispatchMap::const_iterator doesn't work so well: it
// dereferences to a pair<string, const T*>, whereas
// DispatchMap::value_type is just pair<string, T*>. Trying to pass a
// dereferenced iterator to the value_type didn't work because the
// compiler won't let you convert from const T* to plain T*. Changing
// our const_iterator definition above to be based on non-const
// DispatchMap::iterator works better, but of course we have to cast
// away the constness of mDispatch to use non-const iterator. (Sigh.)
return boost::make_transform_iterator(const_cast<DispatchMap&>(mDispatch).begin(),
makeNameDesc);
}
const_iterator end() const
{
// see begin() comments
return boost::make_transform_iterator(const_cast<DispatchMap&>(mDispatch).end(),
makeNameDesc);
}
//@}
/// Get information about a specific Callable
LLSD getMetadata(const std::string& name) const;
/// Retrieve the LLSD key we use for one-arg <tt>operator()</tt> method
std::string getDispatchKey() const { return mKey; }
private:
template <class CLASS, typename METHOD>
void addMethod(const std::string& name, const std::string& desc,
const METHOD& method, const LLSD& required)
{
CLASS* downcast = dynamic_cast<CLASS*>(this);
if (! downcast)
{
addFail(name, typeid(CLASS).name());
}
else
{
add(name, desc, boost::bind(method, downcast, _1), required);
}
}
void addFail(const std::string& name, const std::string& classname) const;
std::string mDesc, mKey;
DispatchMap mDispatch;
static NameDesc makeNameDesc(DispatchMap::value_type item)
{
return NameDesc(item.first, item.second->mDesc);
}
struct LLSDDispatchEntry;
struct ParamsDispatchEntry;
struct ArrayParamsDispatchEntry;
struct MapParamsDispatchEntry;
// Step 2 of parameter analysis. Instantiating invoker<some_function_type>
// implicitly sets its From and To parameters to the (compile time) begin
// and end iterators over that function's parameter types.
template< typename Function
, class From = typename boost::mpl::begin< boost::function_types::parameter_types<Function> >::type
, class To = typename boost::mpl::end< boost::function_types::parameter_types<Function> >::type
>
struct invoker;
// deliver LLSD arguments one at a time
typedef boost::function<LLSD()> args_source;
// obtain args from an args_source to build param list and call target
// function
typedef boost::function<void(const args_source&)> invoker_function;
template <typename Function>
invoker_function make_invoker(Function f);
template <typename Method, typename InstanceGetter>
invoker_function make_invoker(Method f, const InstanceGetter& getter);
void addArrayParamsDispatchEntry(const std::string& name,
const std::string& desc,
const invoker_function& invoker,
LLSD::Integer arity);
void addMapParamsDispatchEntry(const std::string& name,
const std::string& desc,
const invoker_function& invoker,
const LLSD& params,
const LLSD& defaults);
};
/*****************************************************************************
* LLEventDispatcher template implementation details
*****************************************************************************/
// Step 3 of parameter analysis, the recursive case.
template<typename Function, class From, class To>
struct LLEventDispatcher::invoker
{
template<typename T>
struct remove_cv_ref
: boost::remove_cv< typename boost::remove_reference<T>::type >
{ };
// apply() accepts an arbitrary boost::fusion sequence as args. It
// examines the next parameter type in the parameter-types sequence
// bounded by From and To, obtains the next LLSD object from the passed
// args_source and constructs an LLSDParam of appropriate type to try
// to convert the value. It then recurs with the next parameter-types
// iterator, passing the args sequence thus far.
template<typename Args>
static inline
void apply(Function func, const args_source& argsrc, Args const & args)
{
typedef typename boost::mpl::deref<From>::type arg_type;
typedef typename boost::mpl::next<From>::type next_iter_type;
typedef typename remove_cv_ref<arg_type>::type plain_arg_type;
invoker<Function, next_iter_type, To>::apply
( func, argsrc, boost::fusion::push_back(args, LLSDParam<plain_arg_type>(argsrc())));
}
// Special treatment for instance (first) parameter of a non-static member
// function. Accept the instance-getter callable, calling that to produce
// the first args value. Since we know we're at the top of the recursion
// chain, we need not also require a partial args sequence from our caller.
template <typename InstanceGetter>
static inline
void method_apply(Function func, const args_source& argsrc, const InstanceGetter& getter)
{
typedef typename boost::mpl::next<From>::type next_iter_type;
// Instead of grabbing the first item from argsrc and making an
// LLSDParam of it, call getter() and pass that as the instance param.
invoker<Function, next_iter_type, To>::apply
( func, argsrc, boost::fusion::push_back(boost::fusion::nil(), boost::ref(getter())));
}
};
// Step 4 of parameter analysis, the leaf case. When the general
// invoker<Function, From, To> logic has advanced From until it matches To,
// the compiler will pick this template specialization.
template<typename Function, class To>
struct LLEventDispatcher::invoker<Function,To,To>
{
// the argument list is complete, now call the function
template<typename Args>
static inline
void apply(Function func, const args_source&, Args const & args)
{
boost::fusion::invoke(func, args);
}
};
template<typename Function>
typename boost::enable_if< boost::function_types::is_nonmember_callable_builtin<Function> >::type
LLEventDispatcher::add(const std::string& name, const std::string& desc, Function f)
{
// Construct an invoker_function, a callable accepting const args_source&.
// Add to DispatchMap an ArrayParamsDispatchEntry that will handle the
// caller's LLSD::Array.
addArrayParamsDispatchEntry(name, desc, make_invoker(f),
boost::function_types::function_arity<Function>::value);
}
template<typename Method, typename InstanceGetter>
typename boost::enable_if< boost::function_types::is_member_function_pointer<Method> >::type
LLEventDispatcher::add(const std::string& name, const std::string& desc, Method f,
const InstanceGetter& getter)
{
// Subtract 1 from the compile-time arity because the getter takes care of
// the first parameter. We only need (arity - 1) additional arguments.
addArrayParamsDispatchEntry(name, desc, make_invoker(f, getter),
boost::function_types::function_arity<Method>::value - 1);
}
template<typename Function>
typename boost::enable_if< boost::function_types::is_nonmember_callable_builtin<Function> >::type
LLEventDispatcher::add(const std::string& name, const std::string& desc, Function f,
const LLSD& params, const LLSD& defaults)
{
// See comments for previous is_nonmember_callable_builtin add().
addMapParamsDispatchEntry(name, desc, make_invoker(f), params, defaults);
}
template<typename Method, typename InstanceGetter>
typename boost::enable_if< boost::function_types::is_member_function_pointer<Method> >::type
LLEventDispatcher::add(const std::string& name, const std::string& desc, Method f,
const InstanceGetter& getter,
const LLSD& params, const LLSD& defaults)
{
addMapParamsDispatchEntry(name, desc, make_invoker(f, getter), params, defaults);
}
template <typename Function>
LLEventDispatcher::invoker_function
LLEventDispatcher::make_invoker(Function f)
{
// Step 1 of parameter analysis, the top of the recursion. Passing a
// suitable f (see add()'s enable_if condition) to this method causes it
// to infer the function type; specifying that function type to invoker<>
// causes it to fill in the begin/end MPL iterators over the function's
// list of parameter types.
// While normally invoker::apply() could infer its template type from the
// boost::fusion::nil parameter value, here we must be explicit since
// we're boost::bind()ing it rather than calling it directly.
return boost::bind(&invoker<Function>::template apply<boost::fusion::nil>,
f,
_1,
boost::fusion::nil());
}
template <typename Method, typename InstanceGetter>
LLEventDispatcher::invoker_function
LLEventDispatcher::make_invoker(Method f, const InstanceGetter& getter)
{
// Use invoker::method_apply() to treat the instance (first) arg specially.
return boost::bind(&invoker<Method>::template method_apply<InstanceGetter>,
f,
_1,
getter);
}
/*****************************************************************************
* LLDispatchListener
*****************************************************************************/
/**
* Bundle an LLEventPump and a listener with an LLEventDispatcher. A class
* that contains (or derives from) LLDispatchListener need only specify the
* LLEventPump name and dispatch key, and add() its methods. Incoming events
* will automatically be dispatched.
*/
class LL_COMMON_API LLDispatchListener: public LLEventDispatcher
{
public:
LLDispatchListener(const std::string& pumpname, const std::string& key);
std::string getPumpName() const { return mPump.getName(); }
private:
bool process(const LLSD& event);
LLEventStream mPump;
LLTempBoundListener mBoundListener;
};
#endif /* ! defined(LL_LLEVENTDISPATCHER_H) */
|