summaryrefslogtreecommitdiff
path: root/indra/llcommon/lleventdispatcher.h
blob: 4c3c0f34148ddac481a4a1e3084d037ab35bcf16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/**
 * @file   lleventdispatcher.h
 * @author Nat Goodspeed
 * @date   2009-06-18
 * @brief  Central mechanism for dispatching events by string name. This is
 *         useful when you have a single LLEventPump listener on which you can
 *         request different operations, vs. instantiating a different
 *         LLEventPump for each such operation.
 *
 * $LicenseInfo:firstyear=2009&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#if ! defined(LL_LLEVENTDISPATCHER_H)
#define LL_LLEVENTDISPATCHER_H

#include <boost/fiber/fss.hpp>
#include <boost/function_types/is_member_function_pointer.hpp>
#include <boost/function_types/is_nonmember_callable_builtin.hpp>
#include <boost/hof/is_invocable.hpp> // until C++17, when we get std::is_invocable
#include <boost/iterator/transform_iterator.hpp>
#include <functional>               // std::function
#include <memory>                   // std::unique_ptr
#include <string>
#include <typeinfo>
#include <type_traits>
#include <utility>                  // std::pair
#include "always_return.h"
#include "function_types.h"         // LL::function_arity
#include "llevents.h"
#include "llptrto.h"
#include "llsdutil.h"

class LLSD;

/**
 * Given an LLSD map, examine a string-valued key and call a corresponding
 * callable. This class is designed to be contained by an LLEventPump
 * listener class that will register some of its own methods, though any
 * callable can be used.
 */
class LL_COMMON_API LLEventDispatcher
{
public:
    /**
     * Pass description and the LLSD key used by try_call(const LLSD&) and
     * operator()(const LLSD&) to extract the name of the registered callable
     * to invoke.
     */
    LLEventDispatcher(const std::string& desc, const std::string& key);
    /**
     * Pass description, the LLSD key used by try_call(const LLSD&) and
     * operator()(const LLSD&) to extract the name of the registered callable
     * to invoke, and the LLSD key used by try_call(const LLSD&) and
     * operator()(const LLSD&) to extract arguments LLSD.
     */
    LLEventDispatcher(const std::string& desc, const std::string& key,
                      const std::string& argskey);
    virtual ~LLEventDispatcher();

    /// @name Register functions accepting(const LLSD&)
    //@{

    /// Accept any C++ callable with the right signature
    typedef std::function<LLSD(const LLSD&)> Callable;

    /**
     * Register a @a callable by @a name. The passed @a callable accepts a
     * single LLSD value and uses it in any way desired, e.g. extract
     * parameters and call some other function. The optional @a required
     * parameter is used to validate the structure of each incoming event (see
     * llsd_matches()).
     */
    void add(const std::string& name,
             const std::string& desc,
             const Callable& callable,
             const LLSD& required=LLSD())
    {
        addLLSD(name, desc, callable, required);
    }

    template <typename CALLABLE,
              typename=typename std::enable_if<
                  boost::hof::is_invocable<CALLABLE, LLSD>::value
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             CALLABLE&& callable,
             const LLSD& required=LLSD())
    {
        addLLSD(
            name,
            desc,
            Callable(LL::make_always_return<LLSD>(std::forward<CALLABLE>(callable))),
            required);
    }

    /**
     * Special case: a subclass of this class can pass an unbound member
     * function pointer (of an LLEventDispatcher subclass) without explicitly
     * specifying a <tt>std::bind()</tt> expression. The passed @a method
     * accepts a single LLSD value, presumably containing other parameters.
     */
    template <typename R, class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(const LLSD&),
             const LLSD& required=LLSD())
    {
        addMethod<CLASS>(name, desc, method, required);
    }

    /// Overload for both const and non-const methods. The passed @a method
    /// accepts a single LLSD value, presumably containing other parameters.
    template <typename R, class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(const LLSD&) const,
             const LLSD& required=LLSD())
    {
        addMethod<CLASS>(name, desc, method, required);
    }

    // because the compiler can't match a method returning void to the above
    template <class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(const LLSD&),
             const LLSD& required=LLSD())
    {
        addMethod<CLASS>(name, desc, method, required);
    }

    /// Overload for both const and non-const methods. The passed @a method
    /// accepts a single LLSD value, presumably containing other parameters.
    template <class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(const LLSD&) const,
             const LLSD& required=LLSD())
    {
        addMethod<CLASS>(name, desc, method, required);
    }

    // non-const nullary method
    template <typename R, class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)())
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const nullary method
    template <typename R, class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)() const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // non-const nullary method returning void
    template <class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)())
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const nullary method returning void
    template <class CLASS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)() const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // non-const unary method (but method accepting LLSD should use the other add())
    // enable_if usage per https://stackoverflow.com/a/39913395/5533635
    template <typename R, class CLASS, typename ARG,
              typename = typename std::enable_if<
                  ! std::is_same<typename std::decay<ARG>::type, LLSD>::value
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(ARG))
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const unary method (but method accepting LLSD should use the other add())
    template <typename R, class CLASS, typename ARG,
              typename = typename std::enable_if<
                  ! std::is_same<typename std::decay<ARG>::type, LLSD>::value
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(ARG) const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // non-const unary method returning void
    // enable_if usage per https://stackoverflow.com/a/39913395/5533635
    template <class CLASS, typename ARG,
              typename = typename std::enable_if<
                  ! std::is_same<typename std::decay<ARG>::type, LLSD>::value
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(ARG))
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const unary method returning void
    template <class CLASS, typename ARG,
              typename = typename std::enable_if<
                  ! std::is_same<typename std::decay<ARG>::type, LLSD>::value
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(ARG) const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // non-const binary (or more) method
    template <typename R, class CLASS, typename ARG0, typename ARG1, typename... ARGS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(ARG0, ARG1, ARGS...))
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const binary (or more) method
    template <typename R, class CLASS, typename ARG0, typename ARG1, typename... ARGS>
    void add(const std::string& name,
             const std::string& desc,
             R (CLASS::*method)(ARG0, ARG1, ARGS...) const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // non-const binary (or more) method returning void
    template <class CLASS, typename ARG0, typename ARG1, typename... ARGS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(ARG0, ARG1, ARGS...))
    {
        addVMethod<CLASS>(name, desc, method);
    }

    // const binary (or more) method returning void
    template <class CLASS, typename ARG0, typename ARG1, typename... ARGS>
    void add(const std::string& name,
             const std::string& desc,
             void (CLASS::*method)(ARG0, ARG1, ARGS...) const)
    {
        addVMethod<CLASS>(name, desc, method);
    }

    //@}

    /// @name Register functions with arbitrary param lists
    //@{

    /**
     * Register a free function with arbitrary parameters. (This also works
     * for static class methods.)
     *
     * When calling this name, pass an LLSD::Array. Each entry in turn will be
     * converted to the corresponding parameter type using LLSDParam.
     */
    template <typename CALLABLE,
              typename=typename std::enable_if<
                  ! boost::hof::is_invocable<CALLABLE, LLSD>()
             >::type>
    void add(const std::string& name,
             const std::string& desc,
             CALLABLE&& f)
    {
        addV(name, desc, f);
    }

    /**
     * Register a nonstatic class method with arbitrary parameters.
     *
     * To cover cases such as a method on an LLSingleton we don't yet want to
     * instantiate, instead of directly storing an instance pointer, accept a
     * nullary callable returning a pointer/reference to the desired class
     * instance.
     *
     * When calling this name, pass an LLSD::Array. Each entry in turn will be
     * converted to the corresponding parameter type using LLSDParam.
     */
    template<typename Method, typename InstanceGetter,
             typename = typename std::enable_if<
                 boost::function_types::is_member_function_pointer<Method>::value &&
                 ! std::is_convertible<InstanceGetter, LLSD>::value
             >::type>
    void add(const std::string& name, const std::string& desc, Method f,
             const InstanceGetter& getter);

    /**
     * Register a free function with arbitrary parameters. (This also works
     * for static class methods.)
     *
     * Pass an LLSD::Array of parameter names, and optionally another
     * LLSD::Array of default parameter values, a la LLSDArgsMapper.
     *
     * When calling this name, pass an LLSD::Map. We will internally generate
     * an LLSD::Array using LLSDArgsMapper and then convert each entry in turn
     * to the corresponding parameter type using LLSDParam.
     */
    template<typename Function,
             typename = typename std::enable_if<
                 boost::function_types::is_nonmember_callable_builtin<Function>::value &&
                 ! boost::hof::is_invocable<Function, LLSD>::value
             >::type>
    void add(const std::string& name, const std::string& desc, Function f,
             const LLSD& params, const LLSD& defaults=LLSD());

    /**
     * Register a nonstatic class method with arbitrary parameters.
     *
     * To cover cases such as a method on an LLSingleton we don't yet want to
     * instantiate, instead of directly storing an instance pointer, accept a
     * nullary callable returning a pointer/reference to the desired class
     * instance. If you already have an instance in hand,
     * boost::lambda::var(instance) or boost::lambda::constant(instance_ptr)
     * produce suitable callables.
     *
     * TODO: variant accepting a method of the containing class, no getter.
     *
     * Pass an LLSD::Array of parameter names, and optionally another
     * LLSD::Array of default parameter values, a la LLSDArgsMapper.
     *
     * When calling this name, pass an LLSD::Map. We will internally generate
     * an LLSD::Array using LLSDArgsMapper and then convert each entry in turn
     * to the corresponding parameter type using LLSDParam.
     */
    template<typename Method, typename InstanceGetter,
             typename = typename std::enable_if<
                 boost::function_types::is_member_function_pointer<Method>::value &&
                 ! std::is_convertible<InstanceGetter, LLSD>::value
             >::type>
    void add(const std::string& name, const std::string& desc, Method f,
             const InstanceGetter& getter, const LLSD& params,
             const LLSD& defaults=LLSD());

    //@}

    /// Unregister a callable
    bool remove(const std::string& name);

    /// Exception if an attempted call fails for any reason
    struct DispatchError: public LLException
    {
        DispatchError(const std::string& what): LLException(what) {}
    };

    /// Specific exception for an attempt to call a nonexistent name
    struct DispatchMissing: public DispatchError
    {
        DispatchMissing(const std::string& what): DispatchError(what) {}
    };

    /**
     * Call a registered callable with an explicitly-specified name,
     * converting its return value to LLSD (undefined for a void callable).
     * It is an error if no such callable exists. It is an error if the @a
     * event fails to match the @a required prototype specified at add()
     * time.
     *
     * @a event must be an LLSD array for a callable registered to accept its
     * arguments from such an array. It must be an LLSD map for a callable
     * registered to accept its arguments from such a map.
     */
    LLSD operator()(const std::string& name, const LLSD& event) const;

    /**
     * Call a registered callable with an explicitly-specified name and
     * return <tt>true</tt>. If no such callable exists, return
     * <tt>false</tt>. It is an error if the @a event fails to match the @a
     * required prototype specified at add() time.
     *
     * @a event must be an LLSD array for a callable registered to accept its
     * arguments from such an array. It must be an LLSD map for a callable
     * registered to accept its arguments from such a map.
     */
    bool try_call(const std::string& name, const LLSD& event) const;

    /**
     * Extract the @a key specified to our constructor from the incoming LLSD
     * map @a event, and call the callable whose name is specified by that @a
     * key's value, converting its return value to LLSD (undefined for a void
     * callable). It is an error if no such callable exists. It is an error if
     * the @a event fails to match the @a required prototype specified at
     * add() time.
     *
     * For a (non-nullary) callable registered to accept its arguments from an
     * LLSD array, the @a event map must contain the key @a argskey specified to
     * our constructor. The value of the @a argskey key must be an LLSD array
     * containing the arguments to pass to the callable named by @a key.
     *
     * For a callable registered to accept its arguments from an LLSD map, if
     * the @a event map contains the key @a argskey specified our constructor,
     * extract the value of the @a argskey key and use it as the arguments map.
     * If @a event contains no @a argskey key, use the whole @a event as the
     * arguments map.
     */
    LLSD operator()(const LLSD& event) const;

    /**
     * Extract the @a key specified to our constructor from the incoming LLSD
     * map @a event, call the callable whose name is specified by that @a
     * key's value and return <tt>true</tt>. If no such callable exists,
     * return <tt>false</tt>. It is an error if the @a event fails to match
     * the @a required prototype specified at add() time.
     *
     * For a (non-nullary) callable registered to accept its arguments from an
     * LLSD array, the @a event map must contain the key @a argskey specified to
     * our constructor. The value of the @a argskey key must be an LLSD array
     * containing the arguments to pass to the callable named by @a key.
     *
     * For a callable registered to accept its arguments from an LLSD map, if
     * the @a event map contains the key @a argskey specified our constructor,
     * extract the value of the @a argskey key and use it as the arguments map.
     * If @a event contains no @a argskey key, use the whole @a event as the
     * arguments map.
     */
    bool try_call(const LLSD& event) const;

    /// @name Iterate over defined names
    //@{
    typedef std::pair<std::string, std::string> NameDesc;

private:
    struct DispatchEntry
    {
        DispatchEntry(LLEventDispatcher* parent, const std::string& desc);
        virtual ~DispatchEntry() {} // suppress MSVC warning, sigh

        // store a plain dumb back-pointer because the parent
        // LLEventDispatcher manages the lifespan of each DispatchEntry
        // subclass instance -- not the other way around
        LLEventDispatcher* mParent;
        std::string mDesc;

        virtual LLSD call(const std::string& desc, const LLSD& event,
                          bool fromMap, const std::string& argskey) const = 0;
        virtual LLSD getMetadata() const = 0;

        template <typename... ARGS>
        [[noreturn]] void callFail(ARGS&&... args) const
        {
            mParent->callFail<LLEventDispatcher::DispatchError>(std::forward<ARGS>(args)...);
        }
    };
    typedef std::map<std::string, std::unique_ptr<DispatchEntry> > DispatchMap;

public:
    /// We want the flexibility to redefine what data we store per name,
    /// therefore our public interface doesn't expose DispatchMap iterators,
    /// or DispatchMap itself, or DispatchEntry. Instead we explicitly
    /// transform each DispatchMap item to NameDesc on dereferencing.
    typedef boost::transform_iterator<NameDesc(*)(const DispatchMap::value_type&), DispatchMap::const_iterator> const_iterator;
    const_iterator begin() const
    {
        return boost::make_transform_iterator(mDispatch.begin(), makeNameDesc);
    }
    const_iterator end() const
    {
        return boost::make_transform_iterator(mDispatch.end(), makeNameDesc);
    }
    //@}

    /// Get information about a specific Callable
    LLSD getMetadata(const std::string& name) const;

    /// Retrieve the LLSD key we use for one-arg <tt>operator()</tt> method
    std::string getDispatchKey() const { return mKey; }
    /// Retrieve the LLSD key we use for non-map arguments
    std::string getArgsKey() const { return mArgskey; }

    /// description of this instance's leaf class and description
    friend std::ostream& operator<<(std::ostream&, const LLEventDispatcher&);

private:
    void addLLSD(const std::string& name,
                 const std::string& desc,
                 const Callable& callable,
                 const LLSD& required);

    template <class CLASS, typename METHOD,
              typename std::enable_if<
                  std::is_base_of<LLEventDispatcher, CLASS>::value,
                  bool
              >::type=true>
    void addMethod(const std::string& name, const std::string& desc,
                   const METHOD& method, const LLSD& required)
    {
        // Why two overloaded addMethod() methods, discriminated with
        // std::is_base_of? It might seem simpler to use dynamic_cast and test
        // for nullptr. The trouble is that it doesn't work for LazyEventAPI
        // deferred registration: we get nullptr even for a method of an
        // LLEventAPI subclass.
        CLASS* downcast = static_cast<CLASS*>(this);
        add(name,
            desc,
            Callable(LL::make_always_return<LLSD>(
                         [downcast, method]
                         (const LLSD& args)
                         {
                             return (downcast->*method)(args);
                         })),
            required);
    }

    template <class CLASS, typename METHOD,
              typename std::enable_if<
                  ! std::is_base_of<LLEventDispatcher, CLASS>::value,
                  bool
              >::type=true>
    void addMethod(const std::string& name, const std::string& desc,
                   const METHOD&, const LLSD&)
    {
        addFail(name, typeid(CLASS).name());
    }

    template <class CLASS, typename METHOD>
    void addVMethod(const std::string& name, const std::string& desc,
                    const METHOD& method)
    {
        CLASS* downcast = dynamic_cast<CLASS*>(this);
        if (! downcast)
        {
            addFail(name, typeid(CLASS).name());
        }
        else
        {
            // add() arbitrary method plus InstanceGetter, where the
            // InstanceGetter in this case returns 'this'. We don't need to
            // worry about binding 'this' because, once this LLEventDispatcher
            // is destroyed, the DispatchEntry goes away too.
            add(name, desc, method, [downcast](){ return downcast; });
        }
    }

    template <typename Function>
    void addV(const std::string& name, const std::string& desc, Function f);

    void addFail(const std::string& name, const char* classname) const;
    LLSD try_call(const std::string& key, const std::string& name,
                  const LLSD& event) const;

protected:
    // raise specified EXCEPTION with specified stringize(ARGS)
    template <typename EXCEPTION, typename... ARGS>
    [[noreturn]] void callFail(ARGS&&... args) const;
    template <typename EXCEPTION, typename... ARGS>
    [[noreturn]] static
    void sCallFail(ARGS&&... args);

    // Manage transient state, e.g. which registered callable we're attempting
    // to call, for error reporting
    class SetState
    {
    public:
        template <typename... ARGS>
        SetState(const LLEventDispatcher* self, ARGS&&... args):
            mSelf(self)
        {
            mSet = mSelf->setState(*this, stringize(std::forward<ARGS>(args)...));
        }
        // RAII class: forbid both copy and move
        SetState(const SetState&) = delete;
        SetState(SetState&&) = delete;
        SetState& operator=(const SetState&) = delete;
        SetState& operator=(SetState&&) = delete;
        virtual ~SetState()
        {
            // if we're the ones who succeeded in setting state, clear it
            if (mSet)
            {
                mSelf->setState(*this, {});
            }
        }

    private:
        const LLEventDispatcher* mSelf;
        bool mSet;
    };

private:
    std::string mDesc, mKey, mArgskey;
    DispatchMap mDispatch;
    // transient state: must be fiber_specific since multiple threads and/or
    // multiple fibers may be calling concurrently. Make it mutable so we can
    // use SetState even within const methods.
    mutable boost::fibers::fiber_specific_ptr<std::string> mState;

    std::string getState() const;
    // setState() requires SetState& because only the SetState class should
    // call it. Make it const so we can use SetState even within const methods.
    bool setState(SetState&, const std::string& state) const;

    static NameDesc makeNameDesc(const DispatchMap::value_type& item)
    {
        return NameDesc(item.first, item.second->mDesc);
    }

    class LLSDArgsMapper;
    struct LLSDDispatchEntry;
    struct ParamsDispatchEntry;
    struct ArrayParamsDispatchEntry;
    struct MapParamsDispatchEntry;

    // call target function with args from LLSD array
    typedef std::function<LLSD(const LLSD&)> invoker_function;

    template <typename Function>
    invoker_function make_invoker(Function f);
    template <typename Method, typename InstanceGetter>
    invoker_function make_invoker(Method f, const InstanceGetter& getter);
    void addArrayParamsDispatchEntry(const std::string& name,
                                     const std::string& desc,
                                     const invoker_function& invoker,
                                     LLSD::Integer arity);
    void addMapParamsDispatchEntry(const std::string& name,
                                   const std::string& desc,
                                   const invoker_function& invoker,
                                   const LLSD& params,
                                   const LLSD& defaults);
};

/*****************************************************************************
*   LLEventDispatcher template implementation details
*****************************************************************************/
template <typename Function>
void LLEventDispatcher::addV(const std::string& name, const std::string& desc, Function f)
{
    // Construct an invoker_function, a callable accepting const LLSD&.
    // Add to DispatchMap an ArrayParamsDispatchEntry that will handle the
    // caller's LLSD::Array.
    addArrayParamsDispatchEntry(name, desc, make_invoker(f),
                                LL::function_arity<Function>::value);
}

template<typename Method, typename InstanceGetter, typename>
void LLEventDispatcher::add(const std::string& name, const std::string& desc, Method f,
                            const InstanceGetter& getter)
{
    // Subtract 1 from the compile-time arity because the getter takes care of
    // the first parameter. We only need (arity - 1) additional arguments.
    addArrayParamsDispatchEntry(name, desc, make_invoker(f, getter),
                                LL::function_arity<Method>::value - 1);
}

template<typename Function, typename>
void LLEventDispatcher::add(const std::string& name, const std::string& desc, Function f,
                            const LLSD& params, const LLSD& defaults)
{
    // See comments for previous is_nonmember_callable_builtin add().
    addMapParamsDispatchEntry(name, desc, make_invoker(f), params, defaults);
}

template<typename Method, typename InstanceGetter, typename>
void LLEventDispatcher::add(const std::string& name, const std::string& desc, Method f,
                            const InstanceGetter& getter,
                            const LLSD& params, const LLSD& defaults)
{
    addMapParamsDispatchEntry(name, desc, make_invoker(f, getter), params, defaults);
}

template <typename Function>
LLEventDispatcher::invoker_function
LLEventDispatcher::make_invoker(Function f)
{
    // Return an invoker_function that accepts (const LLSD& args).
    return [f](const LLSD& args)
    {
        // When called, call always_return<LLSD>, directing it to call
        // f(expanded args). always_return<LLSD> guarantees we'll get an LLSD
        // value back, even if it's undefined because 'f' doesn't return a
        // type convertible to LLSD.
        return LL::always_return<LLSD>(
            [f, args]
            ()
            {
                return LL::apply(f, args);
            });
    };
}

template <typename Method, typename InstanceGetter>
LLEventDispatcher::invoker_function
LLEventDispatcher::make_invoker(Method f, const InstanceGetter& getter)
{
    return [f, getter](const LLSD& args)
    {
        // always_return<LLSD>() immediately calls the lambda we pass, and
        // returns LLSD whether our passed lambda returns void or non-void.
        return LL::always_return<LLSD>(
            [f, getter, args]
            ()
            {
                // function_arity<member function> includes its implicit 'this' pointer
                constexpr auto arity = LL::function_arity<
                    typename std::remove_reference<Method>::type>::value - 1;

                // Use bind_front() to bind the method to (a pointer to) the object
                // returned by getter(). It's okay to capture and bind a pointer
                // because this bind_front() object will last only as long as this
                // lambda call.
                return LL::apply_n<arity>(LL::bind_front(f, LL::get_ptr(getter())), args);
            });
    };
}

/*****************************************************************************
*   LLDispatchListener
*****************************************************************************/
/**
 * Bundle an LLEventPump and a listener with an LLEventDispatcher. A class
 * that contains (or derives from) LLDispatchListener need only specify the
 * LLEventPump name and dispatch key, and add() its methods. Each incoming
 * event ("request") will automatically be dispatched.
 *
 * If the request contains a "reply" key specifying the LLSD::String name of
 * an LLEventPump to which to respond, LLDispatchListener will attempt to send
 * a response to that LLEventPump.
 *
 * If some error occurs (e.g. nonexistent callable name, wrong params) and
 * "reply" is present, LLDispatchListener will send a response map to the
 * specified LLEventPump containing an "error" key whose value is the relevant
 * error message. If "reply" is not present, the DispatchError exception will
 * propagate. Since LLDispatchListener bundles an LLEventStream, which
 * attempts the call immediately on receiving the post() call, there's a
 * reasonable chance that the exception will highlight the post() call that
 * triggered the error.
 *
 * If LLDispatchListener successfully calls the target callable, but no
 * "reply" key is present, any value returned by that callable is discarded.
 * If a "reply" key is present, but the target callable is void -- or it
 * returns LLSD::isUndefined() -- no response is sent. If a void callable
 * wants to send a response, it must do so explicitly.
 *
 * If the target callable returns a type convertible to LLSD (and, if it
 * directly returns LLSD, the return value isDefined()), and if a "reply" key
 * is present in the request, LLDispatchListener will post the returned value
 * to the "reply" LLEventPump. If the returned value is an LLSD map, it will
 * merge the echoed "reqid" key into the map and send that. Otherwise, it will
 * send an LLSD map containing "reqid" and a "data" key whose value is the
 * value returned by the target callable.
 *
 * (It is inadvisable for a target callable to return an LLSD map containing
 * keys "data", "reqid" or "error", as that will confuse the invoker.)
 *
 * Normally the request will specify the value of the dispatch key as an
 * LLSD::String naming the target callable. Alternatively, several such calls
 * may be "batched" as described below.
 *
 * If the value of the dispatch key is itself an LLSD map (a "request map"),
 * each map key must name a target callable, and the value of that key must
 * contain the parameters to pass to that callable. If a "reply" key is
 * present in the request, the response map will contain a key for each of the
 * keys in the request map. The value of every such key is the value returned
 * by the target callable.
 *
 * (Avoid naming any target callable in the LLDispatchListener "data", "reqid"
 * or "error" to avoid confusion.)
 *
 * Since LLDispatchListener calls the target callables specified by a request
 * map in arbitrary order, this form assumes that the batched operations are
 * independent of each other. LLDispatchListener will attempt every call, even
 * if some attempts produce errors. If any keys in the request map produce
 * errors, LLDispatchListener builds a composite error message string
 * collecting the relevant messages. The corresponding keys will be missing
 * from the response map. As in the single-callable case, absent a "reply" key
 * in the request, this error message will be thrown as a DispatchError. With
 * a "reply" key, it will be returned as the value of the "error" key. This
 * form can indicate partial success: some request keys might have
 * return-value keys in the response, others might have message text in the
 * "error" key.
 *
 * If a specific call sequence is required, the value of the dispatch key may
 * instead be an LLSD array (a "request array"). Each entry in the request
 * array ("request entry") names a target callable, to be called in
 * array-index sequence. Arguments for that callable may be specified in
 * either of two ways.
 *
 * The request entry may itself be a two-element array, whose [0] is an
 * LLSD::String naming the target callable and whose [1] contains the
 * arguments to pass to that callable.
 *
 * Alternatively, the request entry may be an LLSD::String naming the target
 * callable, in which case the request must contain an arguments key (optional
 * third constructor argument) whose value is an array matching the request
 * array. The arguments for the request entry's target callable are found at
 * the same index in the arguments key array.
 *
 * If a "reply" key is present in the request, the response map will contain a
 * "data" key whose value is an array. Each entry in that response array will
 * contain the result from the corresponding request entry.
 *
 * This form assumes that any of the batched operations might depend on the
 * success of a previous operation in the same batch. The @emph first error
 * encountered will terminate the sequence. The error message might either be
 * thrown as DispatchError or, given a "reply" key, returned as the "error"
 * key in the response map. This form can indicate partial success: the first
 * few request entries might have return-value entries in the "data" response
 * array, along with an "error" key whose value is the error message that
 * stopped the sequence.
 */
// Instead of containing an LLEventStream, LLDispatchListener derives from it.
// This allows an LLEventPumps::PumpFactory to return a pointer to an
// LLDispatchListener (subclass) instance, and still have ~LLEventPumps()
// properly clean it up.
class LL_COMMON_API LLDispatchListener:
    public LLEventDispatcher,
    public LLEventStream
{
public:
    /// LLEventPump name, dispatch key [, arguments key (see LLEventDispatcher)]
    template <typename... ARGS>
    LLDispatchListener(const std::string& pumpname, const std::string& key,
                       ARGS&&... args);
    virtual ~LLDispatchListener() {}

private:
    bool process(const LLSD& event) const;
    void call_one(const LLSD& name, const LLSD& event) const;
    void call_map(const LLSD& reqmap, const LLSD& event) const;
    void call_array(const LLSD& reqarray, const LLSD& event) const;
    void reply(const LLSD& reply, const LLSD& request) const;

    LLTempBoundListener mBoundListener;
    static std::string mReplyKey;
};

template <typename... ARGS>
LLDispatchListener::LLDispatchListener(const std::string& pumpname, const std::string& key,
                                       ARGS&&... args):
    // pass through any additional arguments to LLEventDispatcher ctor
    LLEventDispatcher(pumpname, key, std::forward<ARGS>(args)...),
    // Do NOT tweak the passed pumpname. In practice, when someone
    // instantiates a subclass of our LLEventAPI subclass, they intend to
    // claim that LLEventPump name in the global LLEventPumps namespace. It
    // would be mysterious and distressing if we allowed name tweaking, and
    // someone else claimed pumpname first for a completely unrelated
    // LLEventPump. Posted events would never reach our subclass listener
    // because we would have silently changed its name; meanwhile listeners
    // (if any) on that other LLEventPump would be confused by the events
    // intended for our subclass.
    LLEventStream(pumpname, false),
    mBoundListener(listen("self", [this](const LLSD& event){ return process(event); }))
{
}

#endif /* ! defined(LL_LLEVENTDISPATCHER_H) */