1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
/**
* @file lleventcoro.h
* @author Nat Goodspeed
* @date 2009-04-29
* @brief Utilities to interface between coroutines and events.
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#if ! defined(LL_LLEVENTCORO_H)
#define LL_LLEVENTCORO_H
#include <boost/coroutine/coroutine.hpp>
#include <boost/coroutine/future.hpp>
#include <boost/optional.hpp>
#include <string>
#include <stdexcept>
#include "llevents.h"
#include "llerror.h"
/**
* Like LLListenerOrPumpName, this is a class intended for parameter lists:
* accept a <tt>const LLEventPumpOrPumpName&</tt> and you can accept either an
* <tt>LLEventPump&</tt> or its string name. For a single parameter that could
* be either, it's not hard to overload the function -- but as soon as you
* want to accept two such parameters, this is cheaper than four overloads.
*/
class LLEventPumpOrPumpName
{
public:
/// Pass an actual LLEventPump&
LLEventPumpOrPumpName(LLEventPump& pump):
mPump(pump)
{}
/// Pass the string name of an LLEventPump
LLEventPumpOrPumpName(const std::string& pumpname):
mPump(LLEventPumps::instance().obtain(pumpname))
{}
/// Pass string constant name of an LLEventPump. This override must be
/// explicit, since otherwise passing <tt>const char*</tt> to a function
/// accepting <tt>const LLEventPumpOrPumpName&</tt> would require two
/// different implicit conversions: <tt>const char*</tt> -> <tt>const
/// std::string&</tt> -> <tt>const LLEventPumpOrPumpName&</tt>.
LLEventPumpOrPumpName(const char* pumpname):
mPump(LLEventPumps::instance().obtain(pumpname))
{}
/// Unspecified: "I choose not to identify an LLEventPump."
LLEventPumpOrPumpName() {}
operator LLEventPump& () const { return *mPump; }
LLEventPump& getPump() const { return *mPump; }
operator bool() const { return mPump; }
bool operator!() const { return ! mPump; }
private:
boost::optional<LLEventPump&> mPump;
};
/// This is an adapter for a signature like void LISTENER(const LLSD&), which
/// isn't a valid LLEventPump listener: such listeners should return bool.
template <typename LISTENER>
class LLVoidListener
{
public:
LLVoidListener(const LISTENER& listener):
mListener(listener)
{}
bool operator()(const LLSD& event)
{
mListener(event);
// don't swallow the event, let other listeners see it
return false;
}
private:
LISTENER mListener;
};
/// LLVoidListener helper function to infer the type of the LISTENER
template <typename LISTENER>
LLVoidListener<LISTENER> voidlistener(const LISTENER& listener)
{
return LLVoidListener<LISTENER>(listener);
}
namespace LLEventDetail
{
/**
* waitForEventOn() permits a coroutine to temporarily listen on an
* LLEventPump any number of times. We don't really want to have to ask
* the caller to label each such call with a distinct string; the whole
* point of waitForEventOn() is to present a nice sequential interface to
* the underlying LLEventPump-with-named-listeners machinery. So we'll use
* LLEventPump::inventName() to generate a distinct name for each
* temporary listener. On the other hand, because a given coroutine might
* call waitForEventOn() any number of times, we don't really want to
* consume an arbitrary number of generated inventName()s: that namespace,
* though large, is nonetheless finite. So we memoize an invented name for
* each distinct coroutine instance (each different 'self' object). We
* can't know the type of 'self', because it depends on the coroutine
* body's signature. So we cast its address to void*, looking for distinct
* pointer values. Yes, that means that an early coroutine could cache a
* value here, then be destroyed, only to be supplanted by a later
* coroutine (of the same or different type), and we'll end up
* "recognizing" the second one and reusing the listener name -- but
* that's okay, since it won't collide with any listener name used by the
* earlier coroutine since that earlier coroutine no longer exists.
*/
template <typename COROUTINE_SELF>
std::string listenerNameForCoro(COROUTINE_SELF& self)
{
return listenerNameForCoroImpl(self.get_id());
}
/// Implementation for listenerNameForCoro()
LL_COMMON_API std::string listenerNameForCoroImpl(const void* self_id);
/**
* Implement behavior described for postAndWait()'s @a replyPumpNamePath
* parameter:
*
* * If <tt>path.isUndefined()</tt>, do nothing.
* * If <tt>path.isString()</tt>, @a dest is an LLSD map: store @a value
* into <tt>dest[path.asString()]</tt>.
* * If <tt>path.isInteger()</tt>, @a dest is an LLSD array: store @a
* value into <tt>dest[path.asInteger()]</tt>.
* * If <tt>path.isArray()</tt>, iteratively apply the rules above to step
* down through the structure of @a dest. The last array entry in @a
* path specifies the entry in the lowest-level structure in @a dest
* into which to store @a value.
*
* @note
* In the degenerate case in which @a path is an empty array, @a dest will
* @em become @a value rather than @em containing it.
*/
LL_COMMON_API void storeToLLSDPath(LLSD& dest, const LLSD& path, const LLSD& value);
} // namespace LLEventDetail
/**
* Post specified LLSD event on the specified LLEventPump, then wait for a
* response on specified other LLEventPump. This is more than mere
* convenience: the difference between this function and the sequence
* @code
* requestPump.post(myEvent);
* LLSD reply = waitForEventOn(self, replyPump);
* @endcode
* is that the sequence above fails if the reply is posted immediately on
* @a replyPump, that is, before <tt>requestPump.post()</tt> returns. In the
* sequence above, the running coroutine isn't even listening on @a replyPump
* until <tt>requestPump.post()</tt> returns and @c waitForEventOn() is
* entered. Therefore, the coroutine completely misses an immediate reply
* event, making it wait indefinitely.
*
* By contrast, postAndWait() listens on the @a replyPump @em before posting
* the specified LLSD event on the specified @a requestPump.
*
* @param self The @c self object passed into a coroutine
* @param event LLSD data to be posted on @a requestPump
* @param requestPump an LLEventPump on which to post @a event. Pass either
* the LLEventPump& or its string name. However, if you pass a
* default-constructed @c LLEventPumpOrPumpName, we skip the post() call.
* @param replyPump an LLEventPump on which postAndWait() will listen for a
* reply. Pass either the LLEventPump& or its string name. The calling
* coroutine will wait until that reply arrives. (If you're concerned about a
* reply that might not arrive, please see also LLEventTimeout.)
* @param replyPumpNamePath specifies the location within @a event in which to
* store <tt>replyPump.getName()</tt>. This is a strictly optional convenience
* feature; obviously you can store the name in @a event "by hand" if desired.
* @a replyPumpNamePath can be specified in any of four forms:
* * @c isUndefined() (default-constructed LLSD object): do nothing. This is
* the default behavior if you omit @a replyPumpNamePath.
* * @c isInteger(): @a event is an array. Store <tt>replyPump.getName()</tt>
* in <tt>event[replyPumpNamePath.asInteger()]</tt>.
* * @c isString(): @a event is a map. Store <tt>replyPump.getName()</tt> in
* <tt>event[replyPumpNamePath.asString()]</tt>.
* * @c isArray(): @a event has several levels of structure, e.g. map of
* maps, array of arrays, array of maps, map of arrays, ... Store
* <tt>replyPump.getName()</tt> in
* <tt>event[replyPumpNamePath[0]][replyPumpNamePath[1]]...</tt> In other
* words, examine each array entry in @a replyPumpNamePath in turn. If it's an
* <tt>LLSD::String</tt>, the current level of @a event is a map; step down to
* that map entry. If it's an <tt>LLSD::Integer</tt>, the current level of @a
* event is an array; step down to that array entry. The last array entry in
* @a replyPumpNamePath specifies the entry in the lowest-level structure in
* @a event into which to store <tt>replyPump.getName()</tt>.
*/
template <typename SELF>
LLSD postAndWait(SELF& self, const LLSD& event, const LLEventPumpOrPumpName& requestPump,
const LLEventPumpOrPumpName& replyPump, const LLSD& replyPumpNamePath=LLSD())
{
// declare the future
boost::coroutines::future<LLSD> future(self);
// make a callback that will assign a value to the future, and listen on
// the specified LLEventPump with that callback
std::string listenerName(LLEventDetail::listenerNameForCoro(self));
LLTempBoundListener connection(
replyPump.getPump().listen(listenerName,
voidlistener(boost::coroutines::make_callback(future))));
// skip the "post" part if requestPump is default-constructed
if (requestPump)
{
// If replyPumpNamePath is non-empty, store the replyPump name in the
// request event.
LLSD modevent(event);
LLEventDetail::storeToLLSDPath(modevent, replyPumpNamePath, replyPump.getPump().getName());
LL_DEBUGS("lleventcoro") << "postAndWait(): coroutine " << listenerName
<< " posting to " << requestPump.getPump().getName()
<< LL_ENDL;
// *NOTE:Mani - Removed because modevent could contain user's hashed passwd.
// << ": " << modevent << LL_ENDL;
requestPump.getPump().post(modevent);
}
LL_DEBUGS("lleventcoro") << "postAndWait(): coroutine " << listenerName
<< " about to wait on LLEventPump " << replyPump.getPump().getName()
<< LL_ENDL;
// trying to dereference ("resolve") the future makes us wait for it
LLSD value(*future);
LL_DEBUGS("lleventcoro") << "postAndWait(): coroutine " << listenerName
<< " resuming with " << value << LL_ENDL;
// returning should disconnect the connection
return value;
}
/// Wait for the next event on the specified LLEventPump. Pass either the
/// LLEventPump& or its string name.
template <typename SELF>
LLSD waitForEventOn(SELF& self, const LLEventPumpOrPumpName& pump)
{
// This is now a convenience wrapper for postAndWait().
return postAndWait(self, LLSD(), LLEventPumpOrPumpName(), pump);
}
/// return type for two-pump variant of waitForEventOn()
typedef std::pair<LLSD, int> LLEventWithID;
namespace LLEventDetail
{
/**
* This helper is specifically for the two-pump version of waitForEventOn().
* We use a single future object, but we want to listen on two pumps with it.
* Since we must still adapt from (the callable constructed by)
* boost::coroutines::make_callback() (void return) to provide an event
* listener (bool return), we've adapted LLVoidListener for the purpose. The
* basic idea is that we construct a distinct instance of WaitForEventOnHelper
* -- binding different instance data -- for each of the pumps. Then, when a
* pump delivers an LLSD value to either WaitForEventOnHelper, it can combine
* that LLSD with its discriminator to feed the future object.
*/
template <typename LISTENER>
class WaitForEventOnHelper
{
public:
WaitForEventOnHelper(const LISTENER& listener, int discriminator):
mListener(listener),
mDiscrim(discriminator)
{}
// this signature is required for an LLEventPump listener
bool operator()(const LLSD& event)
{
// our future object is defined to accept LLEventWithID
mListener(LLEventWithID(event, mDiscrim));
// don't swallow the event, let other listeners see it
return false;
}
private:
LISTENER mListener;
const int mDiscrim;
};
/// WaitForEventOnHelper type-inference helper
template <typename LISTENER>
WaitForEventOnHelper<LISTENER> wfeoh(const LISTENER& listener, int discriminator)
{
return WaitForEventOnHelper<LISTENER>(listener, discriminator);
}
} // namespace LLEventDetail
/**
* This function waits for a reply on either of two specified LLEventPumps.
* Otherwise, it closely resembles postAndWait(); please see the documentation
* for that function for detailed parameter info.
*
* While we could have implemented the single-pump variant in terms of this
* one, there's enough added complexity here to make it worthwhile to give the
* single-pump variant its own straightforward implementation. Conversely,
* though we could use preprocessor logic to generate n-pump overloads up to
* BOOST_COROUTINE_WAIT_MAX, we don't foresee a use case. This two-pump
* overload exists because certain event APIs are defined in terms of a reply
* LLEventPump and an error LLEventPump.
*
* The LLEventWithID return value provides not only the received event, but
* the index of the pump on which it arrived (0 or 1).
*
* @note
* I'd have preferred to overload the name postAndWait() for both signatures.
* But consider the following ambiguous call:
* @code
* postAndWait(self, LLSD(), requestPump, replyPump, "someString");
* @endcode
* "someString" could be converted to either LLSD (@a replyPumpNamePath for
* the single-pump function) or LLEventOrPumpName (@a replyPump1 for two-pump
* function).
*
* It seems less burdensome to write postAndWait2() than to write either
* LLSD("someString") or LLEventOrPumpName("someString").
*/
template <typename SELF>
LLEventWithID postAndWait2(SELF& self, const LLSD& event,
const LLEventPumpOrPumpName& requestPump,
const LLEventPumpOrPumpName& replyPump0,
const LLEventPumpOrPumpName& replyPump1,
const LLSD& replyPump0NamePath=LLSD(),
const LLSD& replyPump1NamePath=LLSD())
{
// declare the future
boost::coroutines::future<LLEventWithID> future(self);
// either callback will assign a value to this future; listen on
// each specified LLEventPump with a callback
std::string name(LLEventDetail::listenerNameForCoro(self));
LLTempBoundListener connection0(
replyPump0.getPump().listen(name + "a",
LLEventDetail::wfeoh(boost::coroutines::make_callback(future), 0)));
LLTempBoundListener connection1(
replyPump1.getPump().listen(name + "b",
LLEventDetail::wfeoh(boost::coroutines::make_callback(future), 1)));
// skip the "post" part if requestPump is default-constructed
if (requestPump)
{
// If either replyPumpNamePath is non-empty, store the corresponding
// replyPump name in the request event.
LLSD modevent(event);
LLEventDetail::storeToLLSDPath(modevent, replyPump0NamePath,
replyPump0.getPump().getName());
LLEventDetail::storeToLLSDPath(modevent, replyPump1NamePath,
replyPump1.getPump().getName());
LL_DEBUGS("lleventcoro") << "postAndWait2(): coroutine " << name
<< " posting to " << requestPump.getPump().getName()
<< ": " << modevent << LL_ENDL;
requestPump.getPump().post(modevent);
}
LL_DEBUGS("lleventcoro") << "postAndWait2(): coroutine " << name
<< " about to wait on LLEventPumps " << replyPump0.getPump().getName()
<< ", " << replyPump1.getPump().getName() << LL_ENDL;
// trying to dereference ("resolve") the future makes us wait for it
LLEventWithID value(*future);
LL_DEBUGS("lleventcoro") << "postAndWait(): coroutine " << name
<< " resuming with (" << value.first << ", " << value.second << ")"
<< LL_ENDL;
// returning should disconnect both connections
return value;
}
/**
* Wait for the next event on either of two specified LLEventPumps.
*/
template <typename SELF>
LLEventWithID
waitForEventOn(SELF& self,
const LLEventPumpOrPumpName& pump0, const LLEventPumpOrPumpName& pump1)
{
// This is now a convenience wrapper for postAndWait2().
return postAndWait2(self, LLSD(), LLEventPumpOrPumpName(), pump0, pump1);
}
/**
* Helper for the two-pump variant of waitForEventOn(), e.g.:
*
* @code
* LLSD reply = errorException(waitForEventOn(self, replyPump, errorPump),
* "error response from login.cgi");
* @endcode
*
* Examines an LLEventWithID, assuming that the second pump (pump 1) is
* listening for an error indication. If the incoming data arrived on pump 1,
* throw an LLErrorEvent exception. If the incoming data arrived on pump 0,
* just return it. Since a normal return can only be from pump 0, we no longer
* need the LLEventWithID's discriminator int; we can just return the LLSD.
*
* @note I'm not worried about introducing the (fairly generic) name
* errorException() into global namespace, because how many other overloads of
* the same name are going to accept an LLEventWithID parameter?
*/
LLSD errorException(const LLEventWithID& result, const std::string& desc);
/**
* Exception thrown by errorException(). We don't call this LLEventError
* because it's not an error in event processing: rather, this exception
* announces an event that bears error information (for some other API).
*/
class LL_COMMON_API LLErrorEvent: public std::runtime_error
{
public:
LLErrorEvent(const std::string& what, const LLSD& data):
std::runtime_error(what),
mData(data)
{}
virtual ~LLErrorEvent() throw() {}
LLSD getData() const { return mData; }
private:
LLSD mData;
};
/**
* Like errorException(), save that this trips a fatal error using LL_ERRS
* rather than throwing an exception.
*/
LL_COMMON_API LLSD errorLog(const LLEventWithID& result, const std::string& desc);
/**
* Certain event APIs require the name of an LLEventPump on which they should
* post results. While it works to invent a distinct name and let
* LLEventPumps::obtain() instantiate the LLEventPump as a "named singleton,"
* in a certain sense it's more robust to instantiate a local LLEventPump and
* provide its name instead. This class packages the following idiom:
*
* 1. Instantiate a local LLCoroEventPump, with an optional name prefix.
* 2. Provide its actual name to the event API in question as the name of the
* reply LLEventPump.
* 3. Initiate the request to the event API.
* 4. Call your LLEventTempStream's wait() method to wait for the reply.
* 5. Let the LLCoroEventPump go out of scope.
*/
class LL_COMMON_API LLCoroEventPump
{
public:
LLCoroEventPump(const std::string& name="coro"):
mPump(name, true) // allow tweaking the pump instance name
{}
/// It's typical to request the LLEventPump name to direct an event API to
/// send its response to this pump.
std::string getName() const { return mPump.getName(); }
/// Less typically, we'd request the pump itself for some reason.
LLEventPump& getPump() { return mPump; }
/**
* Wait for an event on this LLEventPump.
*
* @note
* The other major usage pattern we considered was to bind @c self at
* LLCoroEventPump construction time, which would avoid passing the
* parameter to each wait() call. But if we were going to bind @c self as
* a class member, we'd need to specify a class template parameter
* indicating its type. The big advantage of passing it to the wait() call
* is that the type can be implicit.
*/
template <typename SELF>
LLSD wait(SELF& self)
{
return waitForEventOn(self, mPump);
}
template <typename SELF>
LLSD postAndWait(SELF& self, const LLSD& event, const LLEventPumpOrPumpName& requestPump,
const LLSD& replyPumpNamePath=LLSD())
{
return ::postAndWait(self, event, requestPump, mPump, replyPumpNamePath);
}
private:
LLEventStream mPump;
};
/**
* Other event APIs require the names of two different LLEventPumps: one for
* success response, the other for error response. Extend LLCoroEventPump
* for the two-pump use case.
*/
class LL_COMMON_API LLCoroEventPumps
{
public:
LLCoroEventPumps(const std::string& name="coro",
const std::string& suff0="Reply",
const std::string& suff1="Error"):
mPump0(name + suff0, true), // allow tweaking the pump instance name
mPump1(name + suff1, true)
{}
/// request pump 0's name
std::string getName0() const { return mPump0.getName(); }
/// request pump 1's name
std::string getName1() const { return mPump1.getName(); }
/// request both names
std::pair<std::string, std::string> getNames() const
{
return std::pair<std::string, std::string>(mPump0.getName(), mPump1.getName());
}
/// request pump 0
LLEventPump& getPump0() { return mPump0; }
/// request pump 1
LLEventPump& getPump1() { return mPump1; }
/// waitForEventOn(self, either of our two LLEventPumps)
template <typename SELF>
LLEventWithID wait(SELF& self)
{
return waitForEventOn(self, mPump0, mPump1);
}
/// errorException(wait(self))
template <typename SELF>
LLSD waitWithException(SELF& self)
{
return errorException(wait(self), std::string("Error event on ") + getName1());
}
/// errorLog(wait(self))
template <typename SELF>
LLSD waitWithLog(SELF& self)
{
return errorLog(wait(self), std::string("Error event on ") + getName1());
}
template <typename SELF>
LLEventWithID postAndWait(SELF& self, const LLSD& event,
const LLEventPumpOrPumpName& requestPump,
const LLSD& replyPump0NamePath=LLSD(),
const LLSD& replyPump1NamePath=LLSD())
{
return postAndWait2(self, event, requestPump, mPump0, mPump1,
replyPump0NamePath, replyPump1NamePath);
}
template <typename SELF>
LLSD postAndWaitWithException(SELF& self, const LLSD& event,
const LLEventPumpOrPumpName& requestPump,
const LLSD& replyPump0NamePath=LLSD(),
const LLSD& replyPump1NamePath=LLSD())
{
return errorException(postAndWait(self, event, requestPump,
replyPump0NamePath, replyPump1NamePath),
std::string("Error event on ") + getName1());
}
template <typename SELF>
LLSD postAndWaitWithLog(SELF& self, const LLSD& event,
const LLEventPumpOrPumpName& requestPump,
const LLSD& replyPump0NamePath=LLSD(),
const LLSD& replyPump1NamePath=LLSD())
{
return errorLog(postAndWait(self, event, requestPump,
replyPump0NamePath, replyPump1NamePath),
std::string("Error event on ") + getName1());
}
private:
LLEventStream mPump0, mPump1;
};
#endif /* ! defined(LL_LLEVENTCORO_H) */
|