summaryrefslogtreecommitdiff
path: root/indra/llcommon/apply.h
blob: ec1a39f7b0734dd10af40cc1664ecc66345631e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/**
 * @file   apply.h
 * @author Nat Goodspeed
 * @date   2022-06-18
 * @brief  C++14 version of std::apply()
 *
 * $LicenseInfo:firstyear=2022&license=viewerlgpl$
 * Copyright (c) 2022, Linden Research, Inc.
 * $/LicenseInfo$
 */

#if ! defined(LL_APPLY_H)
#define LL_APPLY_H

#include "llexception.h"
#include <boost/type_traits/function_traits.hpp>
#include <functional>               // std::mem_fn()
#include <tuple>
#include <type_traits>              // std::is_member_pointer

namespace LL
{

/**
 * USAGE NOTE:
 * https://stackoverflow.com/a/40523474/5533635
 *
 * If you're trying to pass apply() a variadic function, the compiler
 * complains that it can't deduce the callable type, presumably because it
 * doesn't know which arity to reify to pass.
 *
 * But it works to wrap the variadic function in a generic lambda, e.g.:
 *
 * @CODE
 * LL::apply(
 *     [](auto&&... args)
 *     {
 *         return variadic(std::forward<decltype(args)>(args)...);
 *     },
 *     args);
 * @ENDCODE
 *
 * Presumably this is because there's only one instance of the generic lambda
 * @em type, with a variadic <tt>operator()()</tt>.
 *
 * It's pointless to provide a wrapper @em function that implicitly supplies
 * the generic lambda. You couldn't pass your variadic function to our wrapper
 * function, for the same original reason!
 *
 * Instead we provide a wrapper @em macro. Sorry, Dr. Stroustrup.
 */
#define VAPPLY(FUNC, ARGS)                                          \
    LL::apply(                                                      \
        [](auto&&... args)                                          \
        {                                                           \
            return (FUNC)(std::forward<decltype(args)>(args)...);   \
        },                                                          \
        (ARGS))

/*****************************************************************************
*   invoke()
*****************************************************************************/
#if __cpp_lib_invoke >= 201411L

// C++17 implementation
using std::invoke;

#else  // no std::invoke

// Use invoke() to handle pointer-to-method:
// derived from https://stackoverflow.com/a/38288251
template<typename Fn, typename... Args,
         typename std::enable_if<std::is_member_pointer<typename std::decay<Fn>::type>::value,
                                 int>::type = 0 >
auto invoke(Fn&& f, Args&&... args)
{
    return std::mem_fn(std::forward<Fn>(f))(std::forward<Args>(args)...);
}

template<typename Fn, typename... Args,
         typename std::enable_if<!std::is_member_pointer<typename std::decay<Fn>::type>::value,
                                 int>::type = 0 >
auto invoke(Fn&& f, Args&&... args)
{
    return std::forward<Fn>(f)(std::forward<Args>(args)...);
}

#endif // no std::invoke

/*****************************************************************************
*   apply(function, tuple); apply(function, array)
*****************************************************************************/
#if __cpp_lib_apply >= 201603L

// C++17 implementation
// We don't just say 'using std::apply;' because that template is too general:
// it also picks up the apply(function, vector) case, which we want to handle
// below.
template <typename CALLABLE, typename... ARGS>
auto apply(CALLABLE&& func, const std::tuple<ARGS...>& args)
{
    return std::apply(std::forward<CALLABLE>(func), args);
}

#else // C++14

// Derived from https://stackoverflow.com/a/20441189
// and https://en.cppreference.com/w/cpp/utility/apply
template <typename CALLABLE, typename... ARGS, std::size_t... I>
auto apply_impl(CALLABLE&& func, const std::tuple<ARGS...>& args, std::index_sequence<I...>)
{
    // We accept const std::tuple& so a caller can construct an tuple on the
    // fly. But std::get<I>(const tuple) adds a const qualifier to everything
    // it extracts. Get a non-const ref to this tuple so we can extract
    // without the extraneous const.
    auto& non_const_args{ const_cast<std::tuple<ARGS...>&>(args) };

    // call func(unpacked args)
    return invoke(std::forward<CALLABLE>(func),
                  std::forward<ARGS>(std::get<I>(non_const_args))...);
}

template <typename CALLABLE, typename... ARGS>
auto apply(CALLABLE&& func, const std::tuple<ARGS...>& args)
{
    // std::index_sequence_for is the magic sauce here, generating an argument
    // pack of indexes for each entry in args. apply_impl() can then pass
    // those to std::get() to unpack args into individual arguments.
    return apply_impl(std::forward<CALLABLE>(func),
                      args,
                      std::index_sequence_for<ARGS...>{});
}

#endif // C++14

// per https://stackoverflow.com/a/57510428/5533635
template <typename CALLABLE, typename T, size_t SIZE>
auto apply(CALLABLE&& func, const std::array<T, SIZE>& args)
{
    return apply(std::forward<CALLABLE>(func), std::tuple_cat(args));
}

/*****************************************************************************
*   bind_front()
*****************************************************************************/
// To invoke a non-static member function with a tuple, you need a callable
// that binds your member function with an instance pointer or reference.
// std::bind_front() is perfect: std::bind_front(&cls::method, instance).
// Unfortunately bind_front() only enters the standard library in C++20.
#if __cpp_lib_bind_front >= 201907L

// C++20 implementation
using std::bind_front;

#else  // no std::bind_front()

template<typename Fn, typename... Args,
         typename std::enable_if<!std::is_member_pointer<typename std::decay<Fn>::type>::value,
                                 int>::type = 0 >
auto bind_front(Fn&& f, Args&&... args)
{
    // Don't use perfect forwarding for f or args: we must bind them for later.
    return [f, pfx_args=std::make_tuple(args...)]
        (auto&&... sfx_args)
    {
        // Use perfect forwarding for sfx_args because we use them as soon as
        // we receive them.
        return apply(
            f,
            std::tuple_cat(pfx_args,
                           std::make_tuple(std::forward<decltype(sfx_args)>(sfx_args)...)));
    };
}

template<typename Fn, typename... Args,
         typename std::enable_if<std::is_member_pointer<typename std::decay<Fn>::type>::value,
                                 int>::type = 0 >
auto bind_front(Fn&& f, Args&&... args)
{
    return bind_front(std::mem_fn(std::forward<Fn>(f)), std::forward<Args>(args)...);
}

#endif // C++20 with std::bind_front()

/*****************************************************************************
*   apply(function, std::vector)
*****************************************************************************/
// per https://stackoverflow.com/a/28411055/5533635
template <typename CALLABLE, typename T, std::size_t... I>
auto apply_impl(CALLABLE&& func, const std::vector<T>& args, std::index_sequence<I...>)
{
    return apply(std::forward<CALLABLE>(func),
                 std::make_tuple(args[I]...));
}

// produce suitable error if apply(func, vector) is the wrong size for func()
void apply_validate_size(size_t size, size_t arity);

/// possible exception from apply() validation
struct apply_error: public LLException
{
    apply_error(const std::string& what): LLException(what) {}
};

template <size_t ARITY, typename CALLABLE, typename T>
auto apply_n(CALLABLE&& func, const std::vector<T>& args)
{
    apply_validate_size(args.size(), ARITY);
    return apply_impl(std::forward<CALLABLE>(func),
                      args,
                      std::make_index_sequence<ARITY>());
}

/**
 * apply(function, std::vector) goes beyond C++17 std::apply(). For this case
 * @a function @emph cannot be variadic: the compiler must know at compile
 * time how many arguments to pass. This isn't Python. (But see apply_n() to
 * pass a specific number of args to a variadic function.)
 */
template <typename CALLABLE, typename T>
auto apply(CALLABLE&& func, const std::vector<T>& args)
{
    // infer arity from the definition of func
    constexpr auto arity = boost::function_traits<CALLABLE>::arity;
    // now that we have a compile-time arity, apply_n() works
    return apply_n<arity>(std::forward<CALLABLE>(func), args);
}

} // namespace LL

#endif /* ! defined(LL_APPLY_H) */