Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Specifically, append (32) or (64) to the four-part version number stored in
the registry entry used to detect whether this viewer has already been
installed. This is injected as a new VERSION_REGISTRY NSIS variable.
(It was tempting to simply change the value of VERSION_LONG with the embedded
address size. However, there is one other use of VERSION_LONG in the NSIS
template. That use is the subject of MAINT-7533.)
Synthesize the VERSION_REGISTRY value in viewer_manifest.py and add it to the
substitution dict used to populate the NSIS template.
ADDRESS_SIZE isn't passed into viewer_manifest.py, but it can be inferred from
the existing 'arch' parameter: 'arch' as well as 'platform' is used to select
the specific subclass of the ViewerManifest class to instantiate for this run.
Add an appropriate address_size attribute to every such subclass.
Change a couple existing tests on 'arch' to tests on self.address_size instead
-- clearer to the maintainer.
Also, given that subclass selection mechanism, the ViewerManifest base class
shouldn't need if / elif tests on 'platform'. Make build_data_json_platform a
class attribute as well, removing the base-class stanza that dynamically
examines 'platform' and 'arch'.
Similarly, move platform-specific tweaks to the build_data_dict used to
populate build_data.json into a new finish_build_data_dict() method overridden
by individual platform subclasses.
Encapsulate the logic around running the Windows code-signing tool into a
sign() method, and call it as needed. For obtaining environment variables with
fallback values, use os.environ.get() instead of os.path.expandvars() with
tests on the returned value.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
copy calls from viewer manifest
|
|
voice, misc cleanup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
once when above InventoryTrashMaxCapacity limit
|
|
|
|
floater
|
|
|
|
|
|
|
|
|
|
|
|
For the time being we're still compiling for production with C++03. Although
assigning an initializer list to a vector is valid C++11, in C++03 mode clang
rejects it.
|
|
|
|
|
|
|
|
|
|
|
|
This is only transitional, until we integrate the Viewer Management Process
(soon now).
|
|
|
|
changes for 2.6
|
|
|
|
|
|
|
|
There were two distinct LLMemory methods getCurrentRSS() and
getWorkingSetSize(). It was pointless to have both: on Windows they were
completely redundant; on other platforms getWorkingSetSize() always returned
0. (Amusingly, though the Windows implementations both made exactly the same
GetProcessMemoryInfo() call and used exactly the same logic, the code was
different in the two -- as though the second was implemented without awareness
of the first, even though they were adjacent in the source file.)
One of the actual MAINT-6996 problems was due to the fact that
getWorkingSetSize() returned U32, where getCurrentRSS() returns U64. In other
words, getWorkingSetSize() was both useless *and* wrong. Remove it, and change
its one call to getCurrentRSS() instead.
The other culprit was that in several places, the 64-bit WorkingSetSize
returned by the Windows GetProcessMemoryInfo() call (and by getCurrentRSS())
was explicitly cast to a 32-bit data type. That works only when explicitly or
implicitly (using LLUnits type conversion) scaling the value to kilobytes or
megabytes. When the size in bytes is desired, use 64-bit types instead.
In addition to the symptoms, LLMemory was overdue for a bit of cleanup.
There was a 16K block of memory called reserveMem, the comment on which read:
"reserve 16K for out of memory error handling." Yet *nothing* was ever done
with that block! If it were going to be useful, one would think someone would
at some point explicitly free the block. In fact there was a method
freeReserve(), apparently for just that purpose -- which was never called. As
things stood, reserveMem served only to *prevent* the viewer from ever using
that chunk of memory. Remove reserveMem and the unused freeReserve().
The only function of initClass() and cleanupClass() was to allocate and free
reserveMem. Remove initClass(), cleanupClass() and the LLCommon calls to them.
In a similar vein, there was an LLMemoryInfo::getPhysicalMemoryClamped()
method that returned U32Bytes. Its job was simply to return a size in bytes
that could fit into a U32 data type, returning U32_MAX if the 64-bit value
exceeded 4GB. Eliminate that; change all its calls to getPhysicalMemoryKB()
(which getPhysicalMemoryClamped() used internally anyway). We no longer care
about any platform that cannot handle 64-bit data types.
|
|
|
|
argument to pass by value
|
|
|
|
reduce the size of potential memory spikes
|