Age | Commit message (Collapse) | Author |
|
|
|
Specifically, defend against a callback that runs so long it suspends at a
point after the next timer tick.
|
|
Use a static unordered_map to allow a function receiving (lua_State* L) to
look up the LuaState instance managing that lua_State. We've thought about
this from time to time already. LuaState's constructor creates the map entry;
its destructor removes it; the new static getParent(lua_State* L) method
performs the lookup.
Migrate lluau::set_interrupts_counter() and check_interrupts_counter() into
LuaState member functions. Add a new mInterrupts counter for them.
Importantly, LuaState::check_interrupts_counter(), which is indirectly called
by a lua_callbacks().interrupt function, no longer performs any Lua stack
operations. Empirically, it seems the Lua engine is capable of interrupting
itself at a moment when re-entry confuses it.
Change previous lluau::set_interrupts_counter(L, 0) calls to
LuaState::getParent(L).set_interrupts_counter(0).
Also add LuaStackDelta class, and a lua_checkdelta() helper macro, to verify
that the Lua data stack depth on exit from a block differs from the depth on
entry by exactly the expected amount. Sprinkle lua_checkdelta() macros in
likely places.
|
|
|
|
luaL_checkstack() accepts a third parameter which is included in the stack
overflow error message. We've been passing nullptr, leading to messages of the
form "stack overflow ((null))". lluau_checkstack() implicitly passes
__FUNCTION__, so we can distinguish which underlying luaL_checkstack() call
encountered the stack overflow condition.
Also, when calling each atexit() function, pass Luau's debug.traceback()
function as the lua_pcall() error handler. This should help diagnose errors in
atexit() functions.
|
|
|
|
Add Throttle and LogThrottle classes to manage throttled APIs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Add test_flycam.lua to exercise the smaller intervals.
|
|
Thanks, Maxim.
|
|
|
|
Also add Region.lua.
|
|
|
|
Also update the 'UI' help text to reflect its more general nature.
Mention 0-relative rank in the xxToolbarBtn operation help text.
|
|
|
|
|
|
The viewer's main thread's main fiber is responsible for coordinating just
about everything. With the default round_robin fiber scheduling algorithm,
launching too many additional fibers could starve the main fiber, resulting in
visible lag.
This custom scheduler tracks when it switches to and from the main fiber, and
at each context switch, how long it's been since the last time the main fiber
ran. If that exceeds a certain timeslice, it jumps the main fiber to the head
of the queue and resumes that instead of any other ready fiber.
|
|
|
|
|
|
|
|
Convert plain grid (e.g. "agni") to domain form (e.g. "util.agni.lindenlab.com").
Fix a typo in `savedLogins()`: "login_list", not "login.list".
login.lua now returns a table with two functions: `login.login()` and
`login.savedLogins()`.
Defend Lua caller against trying to engage login features too late in startup
sequence: in addition to waiting for "STATE_LOGIN_WAIT", produce an error if
`startup.state()` is beyond that state. Since by then `LLPanelLogin` is
destroyed, `leap.request("LLPanelLogin", ...)` would get no response, causing
the calling Lua script to hang until viewer shutdown.
|
|
'login' accepts optional 'username', 'slurl', 'grid'.
'savedLogins' returns the list of saved usernames in both display form and
internal form.
Make LLPanelLogin::getUserName() accept (const LLPointer<LLCredential>&).
There's a whole separate discussion pending as to whether const LLPointer<T>
should provide access to non-const T methods.
Similarly, make LLCredential::getIdentifier() a const method. These two
changes enable read-only access to credentials.
Make LLPanelLogin methods capture and reuse LLGridManager::instance() as
appropriate.
Add require/login.lua and test_login.lua.
|
|
|
|
|
|
|
|
|
|
|
|
We want to base lua-callables on lua-top-menu.
|
|
This encapsulates the boilerplate associated with passing each distinct
parameter to its corresponding LLFollowCamMgr method.
|
|
|
|
|
|
see fe8c976 for more info
Co-authored-by: Andrey Lihatskiy <alihatskiy@productengine.com>
|
|
|
|
|
|
|
|
Remove documented `LLEventPump` support for `LLEventTrackable`. That claimed
support was always a little bit magical/fragile. IF:
* a class included `LLEventTrackable` as a base class AND
* an instance of that class was managed by `boost::shared_ptr` AND
* you passed one of that class's methods and the `boost::shared_ptr`
specifically to `boost::bind()` AND
* the resulting `boost::bind()` object was passed into `LLEventPump::listen()`
THEN the promise was that on destruction of that object, that listener would
automatically be disconnected -- instead of leaving a dangling pointer bound
into the `LLEventPump`, causing a crash on the next `LLEventPump::post()` call.
The only existing code in the viewer code base that exercised `LLEventTrackable`
functionality was in test programs. When the viewer calls `LLEventPump::listen()`,
it typically stores the resulting connection object in an `LLTempBoundListener`
variable, which guarantees disconnection on destruction of that variable.
The fact that `LLEventTrackable` support is specific to `boost::bind()`, that it
silently fails to keep its promise with `std::bind()` or a lambda or any other
form of C++ callable, makes it untrustworthy for new code.
Note that the code base still uses `boost::signals2::trackable` for other
`boost::signals2::signal` instances not associated with `LLEventPump`. We are
not changing those at this time.
|
|
`listen()` still takes `LLEventListener`, a `callable(const LLSD&)`, but now
also accepts `LLAwareListener`, a `callable(const LLBoundListener&, const LLSD&)`.
This uses `boost::signals2::signal::connect_extended()`, which, when the
signal is called, passes to a connected listener the `LLBoundListener` (aka
`boost::signals2::connection`) representing its own connection. This allows a
listener to disconnect itself when done.
Internally, `listen_impl()` now always uses `connect_extended()`. When passed
a classic `LLEventListener`, `listen()` wraps it in a lambda that ignores the
passed `LLBoundListener`.
`listen()` also now accepts `LLVoidListener`, and internally wraps it in a lambda
that returns `false` on its behalf.
|
|
|
|
|
|
|
|
We couldn't discard the "p.s." fiber.run() call from LuaState::expr() until we
could count on fiber.lua's LL.atexit(fiber.run) call being executed after each
Lua script or chunk, and we couldn't count on that until we made
LLLUAmanager::runScriptFile() instantiate and destroy its LuaState on the C++
Lua-specific coroutine. Now that we've done that, use LL.atexit(fiber.run)
instead of the whole special-case "p.s." in LuaState::expr().
|
|
Remove LLLUAmanager::mumbleScriptLine() LuaState& parameters. Make
startScriptLine(), waitScriptLine() and runScriptLine() exactly parallel to
startScriptFile(), waitScriptFile() and runScriptFile(). That means that
runScriptLine()'s C++ coroutine instantiates and destroys its own LuaState,
which means that LL.atexit() functions will run on the Lua-specific C++
coroutine rather than (say) the viewer's main coroutine.
Introduce LLLUAmanager::script_result typedef for std::pair<int, LLSD> and use
in method returns.
Remove LuaState::initLuaState(); move its logic back into the constructor.
Remove initLuaState() calls in the expr() error cases: they're moot now that
we won't get subsequent expr() calls on the same LuaState instance.
Remove LLFloaterLUADebug "Use clean lua_State" checkbox and the cleanLuaState()
method. Remove mState member.
Remove explicit LuaState declarations from LLLUAmanager tests. Adapt one test
for implicit LuaState: it was directly calling LuaState::obtainListener() to
discover the LuaListener's reply-pump name. But since that test also captures
two leap.request() calls from the Lua script, it can just look at the "reply"
key in either of those requests.
|
|
|
|
|
|
|